Bottlenecks	Comment and Resolution
Time for next-	Most commercial next-generation sequencing services can require
generation sequencing	4 to 6 weeks to sequence samples. As a result, when designing the
	course, the instructor should consider:
	• Performing environmental DNA extraction early in the course.
	• Using the wait-time for the class to perform related experiments.
	In this course, the students conducted chemical analyses of
	water samples.
	• Using real-time technologies such as Oxford Nanopore (Oxford,
	United Kingdom) MinION sequencing (Brown et al., 2017;
	Mitsuhashi et al., 2017).
Uploading metadata	The metadata formatting requirements for MG-RAST is precise and
into MG-RAST	somewhat cryptic. As a result, student submissions of the metadata
(Meyer et al., 2008).	file often failed validation. The following strategies may help overcome the bottleneck:
	 Download the metadata Excel template provided by MG-RAST
	 Bowmoad the metadata Excert template provided by MO-KAS1 Have students watch the metadata entry video tutorial produced
	by Argonne National Laboratory (2012).
	 Have multiple students work on metadata entry. Once a student
	is successful in having their metadata file validated, share that
	file with the other students.
Time for MG-RAST	Because of the high volume of work on the MG-RAST
homology search	supercomputer complex (Meyer et al., 2017), it can take a few days
	from the time sequence data is uploaded into MG-RAST until the
	operational taxonomic unit (OTU) counts are produced. To reduce
	the time for data processing:
	• Only submit sequence data files once. The students can
	aggregate sequence datasets using identification numbers
	generated by MG-RAST.
	• Choose the option of making the sequence data immediately
	available. The data queue processing algorithm places the
Data Analysis on MG	highest priority on public data.
Data Analysis on MG- RAST	Because of the huge dataset in MG-RAST and its high demand on classroom wireless internet, the students may experience difficulties
	using the analysis tools. To remedy the bottleneck:
	 Export the OTU count data at the species level as a tab-
	delimited file.
	 Use a spreadsheet to delete undesired data (e.g., eukaryotes).
	 Use spreadsheet software to format the data file into a format
	compatible with MicrobiomeAnalyst (Dhariwal et al., 2017;
	Chong et al., 2020).
	• Use MicrobiomeAnalyst to perform data normalization and
	analysis.

Table S4: Overcoming bottlenecks in student workflow

References

- Argonne National Laboratory (2012). The MG-RAST Metadata Spreadsheet http://youtu.be/8YT9tbbHwRA [Accessed January 20, 2020].
- Argonne National Laboratory (2017). MG-RAST tutorial: Submitting a dataset <u>http://youtu.be/A06lBNhnupM</u> [Accessed January 20, 2020].
- Brown, B.L., Watson, M., Minot, S.S., Rivera, M.C., and Franklin, R.B. (2017). MinION nanopore sequencing of environmental metagenomes: A synthetic approach. *GigaScience* 6, 1-10.
- Chong, J., Liu, P., Zhou, G., and Xia, J. (2020). Using MicrobiomeAnalyst for comprehensive statistical, functional, and meta-analysis of microbiome data. *Nat. Protoc.* 15, 799-821.
- Dhariwal, A., Chong, J., Habib, S., King, I.L., Agellon, L.B., and Xia, J. (2017). MicrobiomeAnalyst: a web-based tool for comprehensive statistical, visual and metaanalysis of microbiome data. *Nucleic Acids Res.* 45, W180-W188.
- Meyer, F., Bagchi, S., Chaterji, S., Gerlach, W., Grama, A., Harrison, T., Paczian, T., Trimble, W.L., and Wilke, A. (2017). MG-RAST version 4: Lessons learned from a decade of low-budget ultra-high-throughput metagenome analysis. *Brief. Bioinformatics* 20, 1151-1159.
- Meyer, F., Paarmann, D., D'Souza, M., Olson, R., Glass, E.M., and Kubal, M. 2008. The metagenomics RAST server: A public resource for the automatic phylogenetic and functional analysis of metagenomes. *BMC Bioinformatics*, 9:386. doi: 10.1186/1471-2105-9-386.
- Mitsuhashi, S., Kryukov, K., Nakagawa, S., Takeuchi, J.S., Shiraishi, Y., Asano, K., and Imanishi, T. 2017. A portable system for rapid bacterial composition analysis using a nanopore-based sequencer and laptop computer. *Sci. Rep.*, 7:5657. doi: 10.1038/s41598-017-05772-5.
- Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., and Glöckner, F.O. (2012). The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. *Nucleic Acids Res.* 41, D590-596.