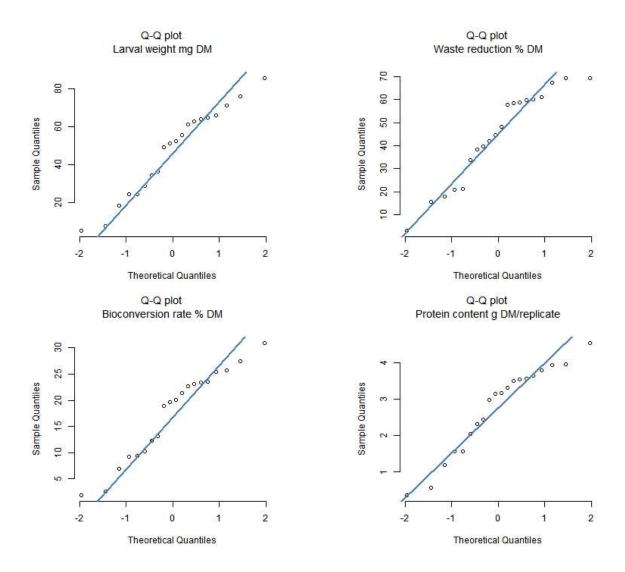
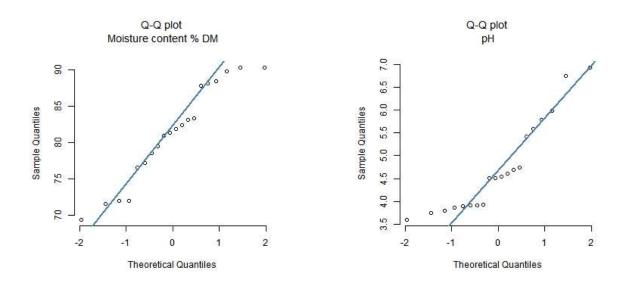
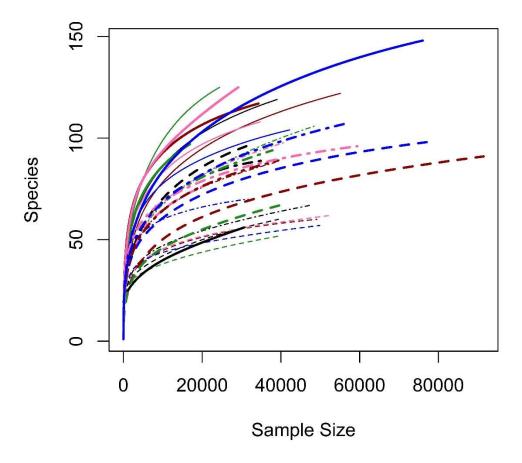
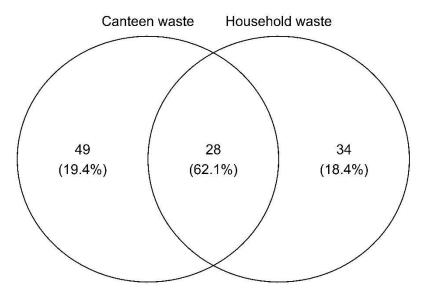

Identification of Bacteria in Two Food Waste Black Soldier Fly Larvae Rearing Residues


Supplementary Material

Supplementary Table 1: Pictures of the fresh and homogenized food waste substrates used for BSFL rearing.




Supplementary Figure 1: Pearson correlation matrix to identify co-linearity between rearing performance metrics and physio-chemical residue composition parameters before Distance-based redundancy analysis (dbRDA). Correlation coefficients -0.7 < r < 0.7 indicate strong co-linearity.


Supplementary Figure 2: Q-Q plots of performance indicators to assess normality. Larval weight (top, left), waste reduction (top, right), bioconversion rate (bottom, left) and protein content (bottom, right).

Supplementary Figure 3: Q-Q plots of physio-chemical residue composition parameters to assess normality. Moisture content (left) and pH (right) had a strong correlation with rearing performance indicators (see Pearson Pearson correlation matrix)

Supplementary Figure 4: Rarefaction curves of all substrate and residue samples. Colors and line types represent the different samples.

Non-core: 58 (0.1%)

Supplementary Figure 5: Venn diagram showing shared ZOTUs between the canteen and household waste rearing substrates. Venn diagram was determine with the ampvis2 package (frequency cut-off >80% and abundance cut-off >0.01%).

Supplementary Table 2: Carbon, water activity and temperature in the substrates and residues.

Substrate	Day	Carbon	Water activity	Temperature
		% DM	-	°C
With BSFL				
Canteen waste	0	55.9†	0.98†	n.a.
	3	53.4 (0.2)	0.97(0.0)	28.1 (0.3)
	6	54.4 (0.6)	0.97(0.0)	29.2 (0.4)
	9	55.5 (0.3)	0.98(0.0)	29.8 (0.4)
	12	55.5 (0.3)	0.96(0.0)	29.8 (0.4)
Sterile canteen waste	0	55.9†	0.98†	n.a.
	3	53.7 (0.9)	0.98(0.0)	28.4 (0.1)
	6	54.0 (0.2)	0.96(0.0)	28.9 (0.4)
	9	54.1†	0.96†	29.1 (0.1)
	12	54.5‡ (0.3)	0.96†	29.1 (0.1)
Household waste	0	51.7†	0.99†	n.a.
	3	52.4‡ (0.3)	$0.98 \ddagger (0.0)$	28.2 (0.2)
	6	52.8 (0.6)	0.96(0.0)	29.4 (0.5)
	9	50.6 (0.8)	0.97(0.0)	29.5 (0.2)
	12	49.2 (0.5)	0.97(0.0)	29.9 (0.1)
Without BSFL				
Canteen waste	12	56.0‡ (0.3)	0.97 (0.0)	28.8 (0.0)
Sterile canteen waste	12	53.1 (0.4)	0.96 (0.0)	n.a.
		·		

In parenthesis: standard deviation for samples where $n \ge 3$, differences between analyses where n = 2

 $[\]dagger$ n=1, \ddagger n=2, n.a. = not analysed