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Part I. Calculation models and methods

The self-consistent electronic structure calculations are performed in the framework of density functional theory (DFT) by using the projected-augmented-wave (PAW) method [1], as implemented in Vienna ab initio Simulation Package (VASP) [2]. The Perdew-Burke-Ernzerhof (PBE) functional is utilized to treat the exchange-correlation energy [3]. The DFT-D3 method with the Becke-Jonson damping [4] is considered for the correction of van der Waals interactions in the hexagonal Fe3GeTe2 bulks and the tetragonal Fe3GeTe2/In2Se3 heterostructures. A vacuum space of 15 Å is set to minimize the interactions between the adjacent atomic layers of our HS system. We consider 13, 6, 8, 14, and 6 valence electrons for the In-4d105s25p1, Se-4s24p4, Fe-3d64s2, Ge-3d104s24p2, and Te-5s25p4 atoms, respectively. By performing accurate convergence tests, the VASP calculations are done according to a high cut-off energy of 500 eV. The k-meshes of 9×9×3 (bulk) and 7×5×1 (2D HS) with the Monkhorst-Pack gird [5] are adopted for the geometry optimization and a much denser k-point mesh (13×13×5 for bulk FGT and 15×9×1 for 2D HS) is used for the electronic structure calculations. On the one hand, all the DFT calculations are spin-polarized due to the magnetic nature of Fe. On the other hand, our HSs containing 3d transition metal Fe that are strong correlated systems.
Therefore, we use the on-site Coulomb interaction (GGA+U) scheme with an effective Ueff = U－J to treat the correlated electrons [6]. For the bulk cases, both atomic coordinates and cell volumes are allowed to relax by VASP. For the modeled 2D HS, the atomic coordinates and the lattice constant c are fully relaxed (rippling of the layers and changes of interlayer distances) until the Hellmann-Feynman force on each atom is lower than 0.01 eV/Å, and the energy tolerance of the structural relaxation is set to be 10-6 eV. The spin-orbit coupling (SOC) effect is also considered in this work since it greatly effects on the Dzyaloshinskii-Moriya (DM) interaction. The parameter Ueff has been carefully checked to give reliable results. For simplicity, we use U instead of Ueff in the following paper, while the procedure for determining U is detailed in Fig. S1 of the Supporting Information. Since the in-plane lattice mismatch between the In2Se3 and Fe3GeTe2 compounds is very small (～0.7%), we adopt the in-plane lattice constants of In2Se3 (a = b = 4.0205 Å) [7] and consider no stacking disorder. 
The total classical spin Hamiltonian of the Heisenberg model including DM interaction for our freestanding FGT monolayer and FGT/In2Se3 HS can be written as [8]
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where Si,j,k,l represents the unit spin vector, the third term is the DM interaction. Only two exchange coupling parameters are necessary: J1 between nearest neighbors in the x-y plane and J2 between nearest neighbors along the z axis. J1 and J2 are computed by performing a number of total energy calculations for several magnetic configurations of our HS system, and then fitting the energies with the results of a nearest-neighbor Heisenberg model [8]. The effective DM interaction coefficients can be obtained by neglecting the single-ion anisotropy.
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Fig. S1. Equilibrium lattice constants a (blue-line) and c (red-line) (a) and the average magnetic moment m of the Fe atoms in the bulk Fe3GeTe2 as a function of U (b). Dashed lines represent the experimental data.
    Fig. S1 shows the tested on-site Coulomb interaction with different effective Hubbard U. As it can be seen in Fig. S1(a) and (b), the lattice parameter a and the magnetic moment m of bulk Fe3GeTe2 agree well with the experimental data [9] when U = 0.5. The calculated lattice parameter c is also in agreement with the experimental data. The relative error is only 1.9% when U = 0.5. The fact that the effective U for the correlated Fe-3d orbital of the Fe3GeTe2 compound should not be large is confirmed by Refs. [10, 11]. For example, U = 2.0 or 6.0 leads to an obvious overestimation of the magnetic moment of Fe3GeTe2 [10].
Part II. The initial structure of the Fe3GeTe2/In2Se3 heterostructure
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Fig. S2. The initial structure of the Fe3GeTe2/In2Se3 heterostructure with the experimental lattice parameters a = 4.0205 Å and b = 6.9637 Å (The blue and grey atoms represent the Fe3GeTe2 and In2Se3 layers, respectively). 
Table S1 Relative displacements between the Fe3GeTe2 and In2Se3 layers
	
	along x
	
	along y
	
	along y=x
	
	along y=-x

	No.
	(x, y) /Å
	No.
	(x, y) /Å
	No.
	(x, y) /Å
	No.
	(x, y) /Å

	1
	(0.503, 0)
	9
	(0, 0.871)
	17
	(0.503, 0.871)
	25
	(-0.503, 0.871)

	2
	(1.005, 0)
	10
	(0, 1.742)
	18
	(1.005, 1.742)
	26
	(-1.005, 1.742)

	3
	(1.507, 0)
	11
	(0, 2.613)
	19
	(1.507, 2.613)
	27
	(-1.507, 2.613)

	4
	(2.010, 0)
	12
	(0, 3.484)
	20
	(2.010, 3.484)
	28
	(-2.010, 3.484)

	5
	(-0.503, 0)
	13
	(0, -0.871)
	21
	(-0.503, -0.871)
	29
	(0.503, -0.871)

	6
	(-1.005, 0)
	14
	(0, -1.742)
	22
	(-1.005, -1.742)
	30
	(1.005, -1.742)

	7
	(-1.507, 0)
	15
	(0, -2.613)
	23
	(-1.507, -2.613)
	31
	(1.507, -2.613)

	8
	(-2.010, 0)
	16
	(0, -3.484)
	24
	(-2.010, -3.484)
	32
	(2.010, -3.484)


    In order to obtain the ground state of the Fe3GeTe2/In2Se3 HS, 32 different models are taken into account. Starting from the initial structure shown in Fig. S2, the In2Se3 layers are fixed, while the Fe3GeTe2 layers are moved along the x-axis, the y-axis, the y = x direction, and the y = －x direction with different steps listed in Table S1. Then, the lattice parameters a, b, and the internal coordinates of these models are fully optimized, while the lattice parameter c is fixed. The results show that the ground-state structure of the Fe3GeTe2/In2Se3 HS correspond to the 28th structure. The most stable equilibrium states of these HSs are shown in Fig. 1(c) of the main text.
Part III. The band structures of the freestanding Fe3GeTe2 monolayer

and the Fe3GeTe2/In2Se3 heterostructure
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Fig. S3. The spin-up (a) and spin-down (b) band structures of the freestanding Fe3GeTe2 monolayer.
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Fig. S4. The spin-up (a) and spin-down (b) band structures of the Fe3GeTe2/In2Se3 HS for the -P case, the spin-up (c) and spin-down (d) band structures of the Fe3GeTe2/In2Se3 HS for the +P case.

The band structures of the freestanding FGT monolayer and the Fe3GeTe2/In2Se3 HSs are shown in Figs. S3 and S4. No band gap can be seen in both the spin-up and spin-down channels, reflecting the metallic nature of the freestanding FGT monolayer and the FGT/In2Se3 HS. Similar to the DOS results given in the main text, the Fe-3d orbital dominates the band structures near the Fermi level, with minor hybridization with the Ge and Te atoms. 
Part IV. The charge transfer between different 3d orbitals

Table S2 The number of electrons for the five split 3d orbitals (dxy, dyz, dxz, dz2, and dx2-y2) of the two non-equivalent Fe1 and Fe2 atoms in the Fe3GeTe2 monolayer and the Fe3GeTe2/In2Se3 HS
	Materials
	FE
	atom
	dxy
	dyz
	dxz
	dz2
	dx2-y2
	total

	Freestanding FGT
	0
	Fe1
	1.22
	1.20
	1.20
	1.41
	1.23
	6.25

	Freestanding FGT
	0
	Fe2
	1.29
	1.39
	1.39
	1.11
	1.29
	6.48

	FGT/In2Se3 HS
	+P
	Fe1
	1.22
	1.19
	1.19
	1.41
	1.22
	6.24

	FGT/In2Se3 HS
	+P
	Fe2
	1.28
	1.39
	1.39
	1.11
	1.28
	6.46

	FGT/In2Se3 HS
	－P
	Fe1
	1.22
	1.19
	1.19
	1.41
	1.22
	6.24

	FGT/In2Se3 HS
	－P
	Fe2
	1.28
	1.39
	1.39
	1.12
	1.29
	6.47


    The 3d electron is one of the most important intrinsic factors to determine the magnetic properties of materials. Our calculated 3d electrons with majority spin for Fe1/Fe2 atoms of the freestanding FGT are 0.89/0.81 (dxy), 0.86/0.85 (dyz), 0.86/0.85 (dxz), 0.91/0.74 (dz2), 0.89/0.81 (dx2-y2). Compared with the results listed in Table S2, it is safely concluded that all Fe atoms are in the high-spin states. The five split Fe-3d orbitals for the –P and +P HSs have almost the same number of electrons compared with the freestanding FGT, which indicate that the almost unchanged Fe-3d electrons lead to the unchanged magnetic configurations and magnetic moments of our HSs. 
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