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Figure S1: System set up for the biofilm development.



1 Population Dynamics models

1.1 Basic model

The initial goal of our model is to capture the general behavior of biofilm for-
mation regarding cell counts, that is, a first exponential growth phase followed
by saturation and decay of populations. For that we build on the logistic model
from population dynamics or ecology without any spatial description of the ex-
periment. We model population density and compare directly with experiments.
Considering a cell number density ρb, the logistic model of growth is

ρ̇b = r
(

1− ρb
K

)
ρb (1)

which already has an initial exponential growth controlled by the growth rate r
(approximately the inverse of division time). It saturates at ρstb = K where K
is known as the carrying capacity of the medium for this reason. This value is
a steady state and thus the logistic model shows no decay.

Our basic assumption is that there is a substance (oxygen, nutrients, etc. . . )
at concentration c that is consumed by the bacteria and when scarce reduces
both the growth rate and the carrying capacity. It is known that a limiting nu-
trient may affect growth rate following Monod’s equation [1], which in the limit
of low concentration (which is a reasonable one since we expect this factor to be
limiting) can be reduced to a linear dependence. For the carrying capacity, it is
also accepted that a limiting factor may control the maximum sustainable size
of a population in the environment [2]. We suggest this particular dependence:

K ∝ c2 (2)

r ∝ c (3)
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Figure S2: Fit of experimental normalized data (blue circles with error bars) with 
basic population dynamics model. All data normalized by the value at 24h. 
Biofilm cell density ρb (green thick line) and nutrient concentration c (green 
dashed line) are obtained numerically solving evolution equations (4) and (5) 
from model with parameters: α = 100, β = 0.023, δ = 6 × 10−4 and b = 0.028.

which gives then

ρ̇b = βcρb −
ρ2b
αc

(4)

with parameters α and β constants not depending on ρb or c. Evolution equation
for nutrient concentration is given by

ċ = −δρbc− bc (5)

with δ the feeding rate and b the autodegradation rate, also supposed constant.
All parameters β, α, δ, b as well as initial concentration c(0) and population

ρb(0) can be fitted to match the experimental data as shown in Figure 2. In-
terestingly, the 6h growth rate from the fit is r = βc(6) ≈ 0.68 h−1, giving a
duplication time of T ≈ 1

r log(2) ' 1.0 h, in agreement to what is expected for
P. fluorescens.

As discussed in the main text, agitation conditions during growth (shaking
or static) have a crucial impact on population evolution. Static data can also
be approximately reproduced with a different set of parameters. However, it is
difficult to imagine a mechanism that greatly affects every parameter. Another
possible solution is to refine the model with some added complexity. This is
explained in the next section.
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Figure 3: Schematic view of model variables and interactions. For example,
biofilm bacteria feed on nutrients inside biofilm, therefore affecting the concen-
tration of nutrients in the biofilm. On the other hand, nutrient concentration
modifies birth and death rates.

1.2 Model with 2 species and 2 concentration variables

The rationale behind this more complex model is that shaking may increase
nutrient diffusion, bacterial transport or both. We therefore designed a model
with planktonic and biofilm bacteria described by ρp(t) and ρb(t). Cells can
migrate from one population to the other with constant (in time) rates k+ and
k−. Also concentration of nutrients cp and cb may differ in both sections and
thus the nutrients may diffuse. However, our model is still without explicit
spatial coordinates. Evolution equations are:

ρ̇b = βbcbρb −
ρ2b
αbcb

+ k+ρp − k−ρb (6)

ρ̇p = βpcpρp −
ρ2p
αpcp

− k+ρp + k−ρb (7)

ċb = −δbcbρb − bcb +D(cp − cb) (8)

ċp = −δpcpρp − bcp −D(cp − cb) (9)

D parameter controls diffusion of nutrients from biofilm to bulk and viceversa.
k+ and k− represent transition rates from bulk to biofilm and viceversa.

Figure 3 schematically represents the variables in the model and the different
interactions.

For parameter values that imply well mixed nutrients and high attachment
rate, i.e., D, k+ sufficiently high, and low detachment rate, the model provides
a biofilm population density that approximately follows the measured values in
shaking conditions, as depicted in Figure 3A in main text. The parameter values
for the 2 species model with shaking conditions have been set to βb = 0.023,βp =
0.030,αb = 80,αp = 100,δb = δp = 6 × 10−4,b = 0.028,cb0 = cp0 = 35,ρb0 = 0,
ρp0 = 8× 10−7,k+ = 1,D = 1 and k− = 10−3.

Keeping all other parameters equal, simply modifying the transition rates
and diffusion constant has a strong enough impact on biofilm population to
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explain the difference between shaking and static conditions. As discussed in
the main text, just decreasing k+ and D to simulate less mixing and increasing
the detachment rate k− to simulate low adhesion, is enough to reproduce ap-
proximately the static experimental data, as shown in Figure 3B in the main
text.

1.3. Planktonic population

These population models can also fit the behavior of planktonic population. Fig-
ure S3 shows the data from an independent experiment where planktonic popu-
lation was recorded. The data shows the same behavior of exponential growth, 
saturation and decay and has been fitted using the basic model described in 
section 3.1.
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Figure S3: Planktonic population under shaking, normalized to its value at 24h. 
Blue dots: experimental data, gray lines: basic model results for bacterial den-
sity ρp and nutrient concentration c.

2 Simulations Details

We have numerically investigated the growth of bacteria colonies, using an hy-
brid approach involving molecular dynamics and Monte Carlo simulations. Our
numerical approach has been inspired by previous ones [3, 4, 5], which we have
extended to incorporate at the same time motility, reproduction and matrix
induced attraction between the bacteria.
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2.1 Mechanical description of a bacterium

We model a bacterium as a rod made of a sequence of n = 7 particles on a
line. The number of particles can be varied, but we have found that n = 7 is
a good compromise between computational cost and realistic description. An
angle-bending interaction between every three consecutive particles forces the
particles to be on a line. All results obtained are in the limit of large stiffness,
where the bending of the rod is negligible. Particles of different bacteria interact
via a LJ potential, as detailed later, so that each particle has a linear size lp,
and each bacterium is a rod with length L(0) = lp + (n − 1)lb(0), where lb is
the distance between two consecutive particles of a bacterium, which can vary
during a simulation as a bacterium grow. The initial value of lb is chosen such
that L(0) ' 1.8µm, with aspect ratio L(0)/lp ' 3, as appropriate for bacteria.

An unconstrained bacterium reproduces in a time trep = 60min, which is
the time at which its length doubles. We model the growth of the bacterium
making the equilibrium bond length a function of time. For a bacterium born
at time tb = 0, which is expected to reproduce at time trep, we fix lb(t) =
lb(0) + (le − l0) t

trep
, and lb(t) = le for t > trep. Here le is chosen such that

L(trep) = 2L(0). When in a crowded environment, the size of a bacterium also
depends on the physical forces that the other bacteria exerts on it. When the
size of a bacterium becomes larger than 2L(0), then the bacterium reproduces.
The reproduction is modeled by replacing a single bacterium of length 2L(0)
with two bacteria of length L(0), which occupy the same volume as the initial
one. Note that the bacteria have a polarity fixed by their preferred direction of
motion. The polarity is randomized when a bacteria reproduces.

2.2 Interaction between bacteria

The interaction between two bacteria results from the interaction of their con-
stituent particles. The interaction is a shifted LJ potential,
U(r) = 4ε

[(
σ
r )12−

(
σ
r
6)
]

+ c for r < rcut, 0 for r > rcut, where the constant c is
chosen such that U(rcut) = 0. We have used rcut = 2.5σ.

2.3 Dynamics

We assume the bacteria to be in the overdamped regime, and therefore apply
to each particle making up a bacterium a viscous for −γv proportional to its
velocity. Here γ is a viscous friction coefficient. We assume the bacteria to
perform a run and tumble motion. During a ‘run’ period, whose duration is
a random number drawn from an exponential distribution with time constant
trun, we apply to the particles making a bacterium a force F = vrun/γ, where
vrun is the velocity of the particles in the running state. This force acts along the
polarity direction of the bacterium. During a ‘tumble’ period, whose duration is
a random number drawn from an exponential distribution ttumble min, we apply
to the bacterium a torque T , which fixes a rotational velocity. The equation of
motion is solved with a Verlet algorithm with timestep 5× 10−3 s.
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The dynamical properties of a bacterium depend on the species, mutant, as
well as on the experimental condition. Here we have considered parameter values
able to reproduce the mean square displacement curves of Ref. [6], conducted in
the early stage of formation of P. aeruginosa biofilms. Specifically, trun = 3 min,
vrun = 0.12 µm · s−1, ttumble = 0.5 min. With these parameters, the diffusion
coefficient results D ' 0.7µm2 · s−1.

3 Shear simulations of the biofilm

We adopt a dissipative particle dynamics (DPD) method, to model and simu-
late the formation of biofilm and its reaction to external stimuli. The DPD
is a particle-based computational method adapt to describe systems at the
mesoscale, that recently has been efficiently used to simulate biofilms [7, 8, 9].
Each DPD particle represents a cluster of molecules, whose level of coarsening
depends on the chosen parameters.

Here following we will refer to the beads forming the bacteria, the polymers
and the solvent with the subscribes b, p and s respectively; we will also express
the quantitative in internal units, clarifying at the end their mapping to real
units. We model the bacterium as a bacillus (rod-shaped) composed by sev-
eral beads, each of diameter σ, held together via harmonic interactions (Figure
5). The central part of a bacterium is shaped as an empty cylinder of length
lb/σ = 6, while the extremes of the bacteria are shaped as spherical caps of
radius Rext/σ = 4. Both the central and extreme parts have an external radius
Rext/σ = 4 and internal radius Rint/σ = 2, i.e. the bacterium membrane is
formed by three layers of particles.

The bonding interaction between bacterium’s beads is given by an harmonic 
potential Kb,b(rb,b − σ), where rb,b is the distance between two bonded beads. 
This interaction acts among all the beads that, in the initial configuration of the 
bacterium (Figure S4), are first neighbor along the X, Y and Z directions. The 
polymers are composed by single chains of length lp, each one formed by lp/σ 
beads, bonded consecutively with an harmonic potential Kp,p(rp,p − σ), being 
rp,p the distance between two consecutive beads along the polymer backbone. 
The solvent is represented by a gas of DPD particles, and fill all the empty space 
left in the simulation box. We choose Kp,p = Kb,b = 30, and fix kBT = 1, being 
kB the Boltzmann constant and T the temperature.

All the non bonded interactions are modeled according to the DPD force
field. In particular, the force on a particle of type i with position ~ri and velocity
~vi due to the interaction with a particle of type j with the position ~rj and

velocity ~vj is given by the sum of three terms: the conservative term ~FCi,j ≡
Ai,jw(ri,j)r̂i,j ; the dissipative term ~FDi,j ≡ −γw2(ri,j) (r̂i,j · ˆvi,j) r̂i,j ; the random

term ~FRi,j ≡ w(ri,j)

(
2kBTγ

dt

)1/2

αr̂i,j . In the previous expression i) ri,j ≡ |~ri,j |,

with ~ri,j ≡ ~ri − ~rj ; ii) r̂i,j ≡ ~ri,j/ri,j ; iii) v̂i,j ≡ ~vi,j/vi,j with ~vi,j ≡ ~vi − ~vj and
vi,j ≡ |~vi,j |; iv) w(ri,j) = 1− ri,j/rc is a weighting factor varying from 0 to 1; v)
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Figure S4: Proposed model for a bacterium

α is a Gaussian random number with zero mean and unit variance; vi) Ai,j is the
amplitude of the conservative force between the particles i and j (larger values
of Ai,j involve stronger repulsion and correspond to a higher level of coarse-
graining); vii) dt = 0.05 is the integration time of the equation of motion. All
the terms vanishes for ri,j > rc being rc the cutoff distance. We fix rc = 2σ for
all the DPD interactions. In such a way the polymer-polymer crossing is strongly
inhibited being the p− p equilibrium distance half of the cutoff distance for the
repulsive interaction. We choose all the interaction with the solvent particles to
be As,s = As,p = As,b = 25. This values has been proven to reproduce correctly
the solvent properties of water [10]. For the p−p, b−b and p−b interactions we
choose larger values, Ap,p = Ab,b = Ap,b = 30, which guarantee the hydration
of the bacteria and polymers (fixing Ap,p = Ab,b = Ap,b = 25 would result
in a collapse of all the bacteria and polymers into a unique globular cluster).
Simulations are performed with LAMMPS, with a simulation box of size L = 32,
and fixing σ = 0.5.

According to the experimental setup, we simulate: i) a system with 184
bacteria, whose volume occupies ∼ 70% of the simulation box (static growth
of the biofilm), with 80 polymers, each commposed by 100 beads, whose total
volume is ∼ 10%, and 35000 solvent particles; ii) a system with 105 bacteria,
whose volume occupies ∼ 40% of the simulation box (growth of the biofilm
under external stress), with 240 polymers occupying a total volume of ∼ 30%,
and 45000 solvent particles. The number of solvent particles is chosen to have a
numerical density (considering the available volume for the solvent) larger than
3, to guarantee the correctness of the solvent hydrodynamics [10].

We take kT = 4.11× 10−21 J as the characteristic energy scale in our simu-
lation. Also, we can fix our length scale to the size of the bacteria, which corre-
spond to ∼ 1.5 µm, and in our simulation it extent to lb+2Rext = 7, which result
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Figure S5: (a) In-phase stress σ′ as function of the amplitude of the box defor-
mation (stress-strain curve) for biofilm grown in static conditions (bacteria fills 
the ∼ 70% of the volume), for systems with 1300 and 1700 crosslinks (CL). σ′ 
is linear in all the range of applied deformations. Data are expresed in internal 
units. (b) Stress-strain curves for biofilm grown under external stimuli. The 
linear regime is observed for deformations up to ∼ 50%.

in a unit length corresponding to lu ∼ 200 nm (and σ ∼ 100 nm). Note that with
this unit length the total size of a single polymer Pel in the experiments would
correspond to a single bead. For this reason we assume that our polymer chains
initially inserted in the system represent a network of connected polymers. We
also fix the unit mass mu to the mass of a single bead. Hence, since the mass
of a bacterium is usually m ∼ 1× 10−15 kg, this give us mu ∼ 2.3× 10−18 kg.
The time scale is so fixed to τintrinsic =

√
mul2u/kBT ∼ 5× 10−6 s.

During the biofilm growth, the bacteria produce polymers which cross link
each other in a network, to which adhere the bacteria themselves. We repro-
duce these phenomenon by randomly placing some binding particles along the
polymer chains, and on the external bacterium surfaces. First we equilibrate
the system letting the polymer and the bacteria diffuse for roughly 4×106 time
steps. Than, we randomly form from 100 to 500 polymer-polymer and polymer-
bacterium crosslinks between non-bonded particles. The cross link is introduced
with a new harmonic interaction KCL(r − σ), with KCL = 30. The system is
equilibrated again for other 4× 106, and the procedure is repeated again, until
the desired number of crosslinks is formed. In this way, we generate a series of
biofilm configurations, with number of crosslinks spanning from 100 up to 5300.

For each cross-linked configuration, we apply an external oscillatory shear
deformation along the X–Y plane by changing the box size with the relation
L = L0 + A sin(2πt/τ), where A is the amplitude of the deformation, ranging
from A = 2.5 (box deformation ∼ 8%) to A = 36 (box deformation ∼ 112%)
[11]. The period τ of the external stress is fixed to τ = 2× 105 (corresponding
to 4 × 106 integration steps), which corresponds to a frequency of 1 Hz. Any
simulation has run at least for 4 complete oscillations of the external shear. The
resulting in-phase stress σ′ has been calculated by fitting the xy component of
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the stress tensor with the relation [11]:

σxy = σ′ sin(2πt/τ) + σ′′ cos(2πt/τ). (10)

In Figure S5 we show the stress-strain data for the static and shaking biofilm, 
for different number of crosslinks.
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