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Data
Claims Based Electronic Health Records
We were using two cohorts: 
1. The „original data“ which was queried from the IBM MarketScan databases covering the years 2011-2015 (5 years of data): The raw unfiltered data had 535,492 patients and after applying the filter criteria 19,517 patients remain; 
2. The „external validation data“ covering the years 2008-2018 (11 years of data) of raw size of 1,283,303 patients and after applying the same criteria as for the training dataset 112,755 patients remain. Hence there is no increase through filtering, instead 2 datasets of different size were queried using the same filter criteria, leading to 19,510 and 112,755 patients, respectively.

3.1 
Definition of Focused Comorbidities and Compilation of Training Data
	Comorbidity
	PheWAS Code description

	Anxiety 
	 "Anxiety disorder", 
"Generalized anxiety disorder", 
"Anxiety, phobic and dissociative disorders", "Agorophobia, social phobia, and panic disorder"

	Bipolar, Schizophrenia 
	 "Bipolar", 
"Schizophrenia and other psychotic disorders"

	Diabetes 
	 "Type 2 diabetes"

	Migraine 
	 "Migraine", 
"Migrain with aura"

	Overweight, Obesity 
	 "Overweight", "Obesity"

	Stroke, IschemAttack 
	 "Ischemic stroke", 
"Transient cerebral ischemia"


Table S 1: Overview of comorbidity defintions using PheWAS.



Methods
3.1.1 
3.1.2 
Integration of Biological Background Knowledge into Claims Data
We used DisGeNET (Piñero et al., 2017) to retrieve for each reported diagnosis in our data disease associated genes. Enrichment of Gene Ontology (GO) biological processes (‘The Gene Ontology Consortium’, 2004), KEGG (Kanehisa, 2000) and Wiki pathways (Slenter et al., 2018) was then estimated via a conditional hyper-geometric test using GOstats (Falcon and Gentleman, 2007) with a tail area based false discovery rate (Strimmer, 2008) cutoff of 5% for GO and 20% for pathways. Furthermore, known disease biomarkers and symptoms were obtained from the Therapeutic Target Database (TTD) (Yang et al., 2016) and the human symptoms-disease network (Zhou et al., 2014). Similarly, medications in the claims data were mapped to known targets via TTD and DrugBank (Wishart, 2006) via text matching of substance names, and information about tissue expression of drug targets was obtained from the Human Protein Atlas (Uhlen et al., 2015). Potential side effects of drugs and their likelihoods were retrieved from SIDER (Kuhn et al., 2016), again by application of text matching of substance names. We obtained information about likely indication areas of drugs from MEDI (Wei et al., 2013). Notably, only indication areas that were marked as “high confidence” by the MEDI authors and were mentioned in at least 10 PubMed articles were used. Finally, medications were mapped to substance classes and groups via the RED BOOK™  database. Further details are described in (Gerlach, Lu and Fröhlich, 2017).
Hyperparameters Optimization

	hyperparameter
	sample space
	lower 
bound
	upper 
bound
	choice
	comment

	architecture

	#layers
	choice
	 
	 
	{1, 2, 3, 4}
	 

	#units/layer shrinkage
	conditional on 
#layers
	 
	 
	1 layer: {1%, 0.1%}
2-4 layers: {10%, 1%}
	 

	activation function
	choice
	 
	 
	tanh, selu
	 

	initializer
	condtitional on 
activation function
	 
	 
	tanh: {glorot normal, orthogonal}
selu: {lecun normal}
	 

	pooling method
	choice
	 
	 
	{max, mean}
	3 windows: [3,6,17]

	convolution
	choice
	 
	 
	{yes, no}
	5 filters per window. 3 windows: [3,6,17]

	regularization

	L1
	log_uniform
	1.00E-02
	1.00E-07
	 
	 

	L2
	log_uniform
	1.00E-02
	1.00E-07
	 
	 

	dropout input
	uniform
	0%
	10%
	 
	 

	dropout hidden
	uniform
	0%
	50%
	 
	 

	batch normalization
	choice
	 
	 
	{yes, no}
	allow "no" for selu

	batch size
	choice
	 
	 
	{64,128,256,512}
	(Keskar et al., 2016)

	training configuration

	learning rate
	log_uniform
	1.00E-01
	1.00E-04
	 
	 

	optimizer
	choice
	 
	 
	{SGD nesterov, RMSProp, Nadam}
	 


Table S 2: Overview of hyperparameters tuned with Bayesian Hyperparameter Optimization. Hyperparameters were sample from continuous distributions (uniform, log-uniform), discrete (#layers, #units/layer, batch size) and categorical (all others) spaces. Some subspaces are conditional on the sampling outcome of another hyperparameter, e. g. the initializer depends on the activation function and the width (#units/layer shrinkage) depends on the depth (#layers).
3.1.3 
Details on Modeling Time Dependency
In our case max pooling corresponds to a mapping from performing a qualitative aggregation and mean pooling from to perform a quantitative aggregation across a patients medical history. Where  are the number of timepoints per feature for a given window size, e.g.  means that data from 3 consectuive timpoints are aggregated.
4 
DeepLORI Outperforms Competing Methods

	
	Uno's c-index

	
	original data
	external validation data
(n=112,755)
	Difference 

time-split VS new patients

	comorbidity
	test set
(n=19,510)
	time-split
(n=15,276)
	new patients
(n=97,479)
	

	Anxiety
	0.73 (0.02)
	0.73
	0.68
	0.05

	Bipolar, Schizophrenia
	0.73 (0.02)
	0.80
	0.77
	0.03

	Diabetes
	0.75 (0.03)
	0.80
	0.67
	0.13

	Migraine
	0.74 (0.04)
	0.75
	0.69
	0.06

	Overweight, Obesity
	0.71 (0.02)
	0.73
	0.64
	0.09

	Stroke, Ischemic Attack
	0.77 (0.02)
	0.76
	0.75
	0.01


Table S3:  Prediction performances (Uno’s c-index) of the observed endpoints. Original data: 5x5-fold nested cross-validation; mean = mean performance of the best model; *se = standard error of the mean. External validation data:  Prediction performance based on the final models.

3. 
Interpretation of DeepLORI Models via SHAP 
Boxplot 30x bootstrap top-15 features
The boxplots in this section show the distribution of shap values: We repeatedly subsampled 5% of our data with replacement (30 times) and re-calculated SHAP values. We checked the robustness of the approach via the variance of SHAP values.
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Figure S 1: SHAP boxplot feature importance Anxiety
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Figure S 2: SHAP boxplot feature importance Bipolar or Schizophrenia
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Figure S 3: SHAP boxplot feature importance Diabetes type 2
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figure S 4: SHAP boxplot feature importance Migraine
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figure S 5: SHAP boxplot feature importance Overweight or Obesity
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figure S 6: SHAP boxplot feature importance Stroke or Ischemic Attack
Marginal dependency plots for top 5 features
The following plots show marginal influences of the top 5 features (according to the mean absolute SHAP value, see before) on predicted comorbidity risks.
· x-axis denotes feature values
· y-axis denotes the SHAP value (higher value = higher influence on predicted comorbidity risk (hazard rate) compared to average patient)

Anxiety
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Figure S 7: SHAP marginal dependency plot Anxiety
Bipolar, Schizophrenia
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Figure S 8: SHAP marginal dependency plot Bipolar, Schizophrenia
Diabetes type 2
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Figure S 9: SHAP marginal dependency plot Diabetes type 2
Migraine
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Figure S 10: SHAP marginal dependency plot Migraine
Overweight, Obesity
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figure S 11: SHAP marginal dependency plot Overweight, Obesity
Stroke, Ischemic Attack
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figure S 12: SHAP marginal dependency plot Stroke, Ischemic Attack
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