Supplementary Material

Root nodule rhizobia from undomesticated shrubs of the dry Woodlands of Southern Africa can nodulate Angolan teak *Pterocarpus angolensis*, an important source of Timber

Wiebke Bünger^a, Abhijit Sarkar^a, Jann Lasse Grönemeyer^a, Janina Zielinski^a, Rasmus Revermann^b, Thomas Hurek^a and Barbara Reinhold-Hurek^{a,*}

^a Department of Microbe-Plant Interactions, CBIB (Center for Biomolecular Interactions), Faculty Biology and Chemistry, University of Bremen, D-28359 Bremen, Germany;

^b Department Biodiversity, Ecology and Evolution of Plants, Institute for Plant Science and Microbiology, University of Hamburg, D-22609 Hamburg, Germany.

Supplementary Text S1. Screening of Pterocarpus angolensis for nodules.

Sites in Northern Namibia close to Rundu near the Okavango river were selected where large trees of *P. angolensis* were growing. However, nodules were not detected on inspected unearthed roots of *P. angolensis* trees (four) which would have been the prime source for symbionts, and small tree seedlings were not found at the inspected sites. Even in the rainy season, unearthing deep roots from Kavango soils without detaching putative nodules was difficult. Therefore, from a nursery in Rundu, Namibia, roots of young *P. angolensis* plants were screened for root nodules; however, among four plants no convincing nodule structures were detected. Only one root showed slight protrusions that were nevertheless used for cultivation of rhizobia. The fast-growing strain WR95 was isolated from these surface-sterilized structures (**Supplementary Table S1**). Also among seedlings grown for 7 weeks in a germination experiment in small pots containing sand-compost mixtures in Namibia (De Cauwer et al., 2018), approximately 20 inspected seedlings did not show nodules.

De Cauwer, V., Chaka, M., Chimwamurombe, P.M., George, D., Ham, H., Heita, H., et al. (2018). "Artificial and assisted natural regeneration of socio-economically important southern African tree species," in *Climate change and adaptive land management in southern Africa – assessments, changes, challenges, and solutions,* eds. R. Revermann, K.M. Krewenka, U. Schmiedel, J.M. Olwoch, J. Helmschrot & N. Jürgens. (Göttingen, Windhoek: Klaus Hess Publishers), 324-331.

Table S1 Origin of bacterial isolates							
		Sampling date					
Strain name	Host plant	for novel	Location/Coordinates	Reference			
		isolates					
Bradyrhizobium vignae $7-2^{\mathrm{T}}$	Vigna unguiculata (L.)Walp.		1. Namibia, Mashare, MADI Res. Station S17.892806, E20.210467	(Grönemeyer et al., 2016)			
Bradyrhizobium ripae WR4 ^T	<i>Indigofera rautanenii</i> Baker f.		2. Namibia, Nkwazi Lodge, near Okavango river S17.865515, E19.908073	(Bünger et al., 2018)			
Bradyrhizobium namibiense 5-10 ^T	<i>Lablab purpureus</i> (L.) Sweet		3. Namibia, Mashare, MADI Res. Station S17.89274, E20.21068	(Grönemeyer et al., 2017)			
Bradyrhizobium sp. 1-7	Arachis hypogaea L.		4. Namibia, Mashare, MADI Res. Station S17.895486, E20.211047	(Grönemeyer et al., 2014)			
<i>Bradyrhizobium</i> sp. WR23, WR27	<i>Desmodium barbatum</i> (L.) Benth.	March 2013	5. Angola, Bié Province, Miombo woodlands near Cusseque S13.69972, E17.06894	This study			
Ensifer sp. WR41	<i>Wiborgia monoptera</i> E. Mey.	October 2013	6. South Africa, Namaqualand S30.385722, E 18.28516	This study			
Mesorhizobium sp. WR52	<i>Wiborgia monoptera</i> E. Mey.	October 2013	6. South Africa, Namaqualand S30.385722, E 18.28516	This study			
<i>Bradyrhizobium</i> sp. WR74	<i>Leobordea digitata</i> (Harv.) BE.	October 2013	7. South Africa, Namaqualand S30.385722, E 18.28517	This study			
<i>Bradyrhizobium</i> sp. WR93	Chamaecrista sp.	February 2014	2. Namibia, Nkwazi Lodge S17.865515, E19.908073	This study			
<i>Microbacterium</i> sp. WR95	Pterocarpus angolensis DC.	February 2014	8. Namibia, Nursery in Rundu -S17.9333, E19.7667	This study			
Bradyrhizobium sp. WR96	Indigofera alternans DC.	February 2014	9. Namibia, Kalahari near street Gobabis- Drimiopsis, S22.290000, E018.99632	This study			

- Bünger, W., Grönemeyer, J.L., Sarkar, A., and Reinhold-Hurek, B. (2018). *Bradyrhizobium ripae* sp. nov., a nitrogen-fixing symbiont isolated from nodules of wild legumes in Namibia. *Int. J. Syst. Evol. Microbiol.* 68, DOI 10.1099/ijsem.1090.002955.
- Grönemeyer, J.L., Bünger, W., and Reinhold-Hurek, B. (2017). *Bradyrhizobium namibiense* sp. nov., a symbiotic nitrogen-fixing bacterium from root nodules of *Lablab purpureus*, hyacinth bean, in Namibia. *Int. J. Syst. Evol. Microbiol.* 67, 4884-4891.
- Grönemeyer, J.L., Hurek, T., Bünger, W., and Reinhold-Hurek, B. (2016). *Bradyrhizobium vignae* sp. nov., a nitrogen-fixing symbiont isolated from effective nodules of *Vigna* and *Arachis. Int. J. Syst. Evol. Microbiol.* 66, 62-69.
- Grönemeyer, J.L., Kulkarni, A., Berkelmann, D., Hurek, T., and Reinhold-Hurek, B. (2014). Identification and characterization of rhizobia indigenous to the Okavango region in Sub-Saharan Africa. *Appl. Environ. Microbiol.* 80, 7244-7257.

Table S2 Soil data for sampling location of isolates							
Strain name	Location	pH in H ₂ O ^a	EC in 1:2.5 soil-water [μS cm-1]	Total organic carbon [%]	C/N ratio	Plant available Phosphorous [mg kg ⁻¹]	Plant available potassium [g kg ⁻¹]
Bradyrhizobium vignae 7-2 ^T	1. Namibia, Mashare ^b	7.6	96	0.42	8.6	35.4	0,174
Bradyrhizobium ripae WR4 ^T	2. Namibia, Nkwazi Lodge, near Okavango river S17.515515, E19.542997	5.4	36	1.37	11.6	0.057	0.005
Bradyrhizobium namibiense 5-10 ^T	3. Namibia, Mashare, MADI Res. Station S17.89274, E20.21068	7.6	96	0.42	8.6	35.4	0,174
<i>Bradyrhizobium</i> sp. 1-7	4. Namibia, Mashare, MADI Res. Station S17.895486, E20.211047	6.4	17	0.42	11.1	0.009	0.026
Bradyrhizobium sp. WR23, WR27	5. Angola, Bié Province, Miombo woodlands near Cusseque S13.69972, E17.06894	5.5	13	0.791	16.1	0.008	n.d.
Ensifer sp.WR41	6. South Africa, Namaqualand S30.385722, E 18.28516	5.8	22	0.31	10.3	n.d	n.d.
<i>Mesorhizobium</i> sp. WR52	6. South Africa, Namaqualand S30.385722, E 18.28516	5.8	22	0.31	10.3	n.d	n.d.
Bradyrhizobium sp. WR74	7. South Africa, Namaqualand S30.385722, E 18.28517	n.d.	n.d.	n.d.	n.d.	n.d	n.d.

Bradyrhizobium	2. Namibia, Nkwazi Lodge	5.4	36	1.37	11.6	0.057	0.005
sp. WR93	S17.515515, E19.542997						
Microbacterium	8. Namibia, Nursery in	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
sp. WR95	Rundu						
Bradyrhizobium	9. Namibia, Kalahari near	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
sp. WR96	street Gobabis-Drimiopsis,						
	S22.290000, E018.99632						

^a Soil data from SASSCAL Data and Information Portal, <u>https://www.sasscal.org/sasscal-data-and-information-portal/</u>
 ^b Numbering as in Table S1, Location/coordinates

Supplementary Table S3 PCR conditions and accession numbers for genes sequenced in						
this study ^a						
Gene	Sequence with accession numbers	primer names	Conditions for			
		with sequence	amplification by			
			PCR			
16S rRNA	Bradyrhizobium ripae strain WR4 ^T	Forward primer	95°C - 5 min;			
	(MF593081); Bradyrhizobium sp. WR23	Bac8uf	40 cycles of 95°C -			
	(MK259093); <i>Bradyrhizobium</i> sp. WR74	(5'AGAGTTTGA	1 min, 50°C - 30 s,			
	(MN174665); Bradyrhizobium sp. WR93	TNHTGGYTCAG	72°C - 2 min; final			
	(MK259089); Bradyrhizobium sp. WR96	3'); reverse primer	elongation 72°C -			
	(MN174665); Bradyrhizobium vignae 7-2	Univ1492r	10 min			
	(KP899563); <i>Ensifer</i> sp. WR41	(5'GGNTACCTT				
	(MK259091); Mesorhizobium sp. WR52	GTTACGACTT3')				
	(MK259092)					
ITS: 16S-	Bradyrhizobium ripae strain WR4 ^T	Forward primer	95°C - 4 min; 40			
23S rRNA	(MF593082); Bradyrhizobium sp. WR23	FGPS132'	cycles of 94°C - 1			
internal	(MH171245); <i>Bradyrhizobium</i> sp. WR74	(5'CCGGGTTTCC	min, 58°C - 1 min,			
transcribed	(MH171175); Bradyrhizobium sp. WR93	CCATTCGG-3');	72°C - 2 min; final			
spacer	(MH171247); Bradyrhizobium sp. WR96	reverse primer	elongation 72°C -			
region	(MH171260); <i>B. vignae</i> 7-2 (KM378574);	FGPS1490	10 min			
	B. kavangense 14-3 (KM378507); B.	(5'TGCGGCTGG				
	subterraneum 58 2-1 (KM378539);	ATCACCTCCTT				
	<i>Bradyrhizobium</i> sp. 1-7 (KM378498); <i>B</i> .	3')				
	namibiense 5-10 (KM378502)					
glnII	Bradyrhizobium ripae strain WR4 ^T	Forward primer	95°C - 5 min; 35			
	(MF593086); Bradyrhizobium sp. WR23	glnII12F	cycles of 94°C - 1			
	(MK689367); <i>Bradyrhizobium</i> sp. WR74	(5'YAAGCTCGA	min, 57°C - 40 s,			
	(MH182945); <i>Bradyrhizobium</i> sp. WR93	GTACATYTGGC	72°C - 1 min; final			
	(MH182984); <i>Bradyrhizobium</i> sp. WR96	T3'); reverse	elongation 72°C -			
	(MH182991); <i>B. vignae</i> 7-2 (KM378443);	primer glnII689R	10 min			
	B. kavangense 14-3 (KM378446); B.	(5'TGCATGCCSG				
	subterraneum 58 2-1 (KM378484);	AGCCGTTCCA3'				
	Bradyrhizobium sp. 1-7 (KM378436); B.)				
	namibiense 5-10 (KM378440)					
recA	Bradyrhizobium ripae strain WR4 ^T	Forward primer	95°C - 5 min; 35			
	(MK689368); Bradyrhizobium sp. WR23	recA41F	cycles of 94°C - 1			

	(MK689368); <i>Bradyrhizobium</i> sp. WR74	(5'TTCGGCAAG	min, 57°C - 40 s,
	(MH182760); Bradyrhizobium sp. WR93	GGMTCGRTSAT	72°C - 1 min; final
	(MH182814); Bradyrhizobium sp. WR96	G3'); reverse	elongation 72°C -
	(MH182797); B. vignae 7-2 (KM378374);	primer recA640R	10 min
	B. kavangense 14-3 (KM378399); B.	(5'ACATSACRCC	
	subterraneum 58 2-1 (KM378397);	GATCTTCATGC3	
	Bradyrhizobium sp. 1-7 (KM378372); B.	')	
	namibiense 5-10 (KM378377)		
gyrB	<i>Bradyrhizobium ripae</i> strain WR4 ^T	Forward primer	95°C - 5 min;
	(MF593094); <i>Bradyrhizobium</i> sp. WR23	gyrB343F	5 cycles of 94°C - 2
	(MH182827); <i>Bradyrhizobium</i> sp. WR74	(5'GAAYTCCTA	min, 57°C - 2 min,
	(MH182865); Bradyrhizobium sp. WR93	YAAGG3');	72°C - 1.5 min;
	(MH182838); <i>Bradyrhizobium</i> sp. WR96	reverse primer	then 28 cycles of
	(MH182815); B. vignae 7-2 (KX683216);	gyrB1043R	94°C - 30 s, 57°C -
	B. kavangense 14-3 (KX661397); B.	(5'AGCTTGTCCT	1 min, 72°C - 1.5
	subterraneum 58 2-1 (KX661396);	TSGTCTGCG3')	min; final
	Bradyrhizobium sp. 1-7 (MK689365); B.		elongation 72°C - 5
	namibiense 5-10 (KX661393)		min
nodC	Bradyrhizobium ripae strain WR4 ^T	Forward primer	95°C - 4 min; 35
	(MF593106); Bradyrhizobium sp. WR23	NodCfor540	cycles of 94°C - 1
	(MK259093); <i>Bradyrhizobium</i> sp. WR74	(5'TGATYGAYAT	min, 51°C - 1 min,
	(MK259095); Bradyrhizobium sp. WR93	GGARTAYTGGC	72°C - 1 min; final
	(MK259094); Bradyrhizobium sp. WR96	T3'); reverse	elongation 72°C -
	(MK259096); B. vignae 7-2 (KT362339);	primer	10 min
	Bradyrhizobium sp. 1-7 (MK259097); B.	NodCrev1160	
	namibiense 5-10 (KX661399); B.	(5'CGYGACARC	
	diazoefficiens USDA 110 (BA000040); B.	CARTCGCTRTT	
	yuanmingense NBRC100594 (AB354633);	G3')	
	<i>B. tropiciagri</i> SEMIA 6148 (KP234520); B.		
	lablabi CCBAU23086 (GU433565); B.		
	elkanii USDA 76 (HQ233221); Ensifer sp.		
	WR41 (MW353154); Mesorhizobium sp.		
	WR52 (MW353155)		
^a List of C	nDank according symbols (hald) for the	rkan gana sagwaraa	obtained for this
LIST OF GE	mbank accession numbers (bold) for the ma	iker gene sequences	obtained for this

^a List of GenBank accession numbers (bold) for the marker gene sequences obtained for this study. Primer names and sequences as well as PCR amplification conditions given for each marker gene.

Supplementary Figure S1 | Map of sampling locations. Triangles point to sampling locations numbered according to Table S1. Gray shade, distribution of *Pterocarpus angolensis* according to De Cauwer et al. (2017) Map from d-maps.com.

De Cauwer, V., Fichtler, E., Beeckman, H., Graz, F.P., Mertens, J., Van Holsbeeck, S., et al. (2017). Predicting site productivity of the timber tree *Pterocarpus angolensis*. *South. Forests* 79, 259-268. doi: 10.2989/20702620.2016.1256042.

Supplementary Figure S2 | Root nodules found in plants collected for isolation of root nodule bacteria. (A) *Desmodium barbatum*, (B) *Indigofera rautanenii*, (C) *Chamaecrista* sp., (D) *Wiborgia monoptera*. Bars represent 2 mm.

Supplementary Figure S3 Pterocarpus angolensis phenotypes (A) leaf SPAD values (B) and shoot fresh weight (C) 6 weeks post inoculation; growth in sterile vermiculite/sand mixture in

phytotron. (A) *Pterocarpus angolensis* with (a) no inoculant (negative control) or treated with following different inoculants: *Bradyrhizobium* sp. WR93 (b) , *B. ripae* WR4^T (c), *B. elkanii* LMG 6134^T (d), *B. namibiense* 5-10^T (e), or *B. yuanmingense* LMG 21827^T (f). (B) Soil-plant analysis development (SPAD) meter values of young leaves from inoculated or non-inoculated plants before harvest Three SPAD values each from three young leaves were recorded per plant. Data from two independent inoculation experiments with three plants each, shown separately. © hoot fresh weights of the same experiment. Scatter dot plots shown with means (horizontal line), standard deviation (bars), and original values as dots. Data with different letters indicate statistic significance (*P* < 0.05) between treatments, using an ANOVA mixed-effects model (GraphPad Prism 9.0).

0.05

Supplementary Figure S4 | Neighbor-joining phylogram of partial *nodC* nucleotide sequences *Mesorhizobium* sp. WR52 and *Ensifer* sp. WR41 isolated from root nodules of *Wiborgia monoptera*.

The evolutionary history was inferred using the Neighbor-joining method. The percentage of replicate trees in which the associated taxa clustered together in the bootstrap test (1000 replicates) are shown next to the branches. The evolutionary distances were computed using the Maximum Composite Likelihood method and are in the units of the number of base substitutions per site. The analyses involved 65 nucleotide sequences of isolates (in bold and marked by blue dots) and reference strains with a total of 521 positions in the final dataset. Evolutionary analyses were conducted in MEGA 6.