

Supplementary Material

1 NONLINEAR ENGINE MODEL

$$\begin{split} \vec{x}_{1} &= \dot{P}_{bm} = \frac{\gamma_{bm}R_{bm}}{V_{bm}} [W_{comp}T_{cac} - W_{thr}T_{bm} - W_{byp}T_{bm}] \\ \vec{x}_{2} &= \dot{P}_{im} = \frac{\gamma_{im}R_{im}}{V_{im}} [W_{thr}T_{bm} - W_{cyl}T_{im}] \\ \vec{x}_{3} &= \dot{P}_{em} = \frac{\gamma_{em}R_{em}}{V_{em}} [W_{cylout}T_{cylout} - W_{turb}T_{em} - W_{wg}T_{em}] \\ \vec{x}_{4} &= \dot{T}_{bm} = \frac{R_{bm}T_{bm}}{P_{bm}V_{bm}} [W_{comp}(\gamma_{cac}T_{cac} - T_{bm}) \\ &- (W_{thr} + W_{byp})(\gamma_{bm}T_{bm} - T_{bm})] \\ \vec{x}_{5} &= \dot{T}_{im} = \frac{R_{im}T_{im}}{P_{im}V_{im}} [W_{thr}(\gamma_{bm}T_{bm} - T_{im}) - W_{cyl}(\gamma_{im}T_{im} - T_{im})] \\ \vec{x}_{6} &= \dot{T}_{em} = \frac{R_{em}T_{em}}{P_{em}V_{em}} [W_{cylout}(\gamma_{cylout}T_{cylout} - T_{em}) \\ &- (W_{turb} + W_{wg})(\gamma_{em}T_{em} - T_{em})] \\ \vec{x}_{7} &= \dot{\omega}_{tc} = \frac{Z_{turb} - Z_{comp}}{I_{tc}\dot{\omega}_{tc}} \\ \vec{x}_{8} &= \dot{F}_{ub,bm} = \frac{R_{bm}T_{bm}}{P_{bm}V_{bm}} [W_{inlet}(1 - F_{ub,bm}) + W_{egrl}(F_{ub,em} - F_{ub,bm})] \\ \vec{x}_{9} &= \dot{F}_{b,bm} = \frac{R_{bm}T_{bm}}{P_{bm}V_{bm}} [W_{inlet}(0 - F_{b,bm}) + W_{egrl}(F_{b,em} - F_{b,bm})] \\ \vec{x}_{10} &= \dot{F}_{ub,im} = \frac{R_{im}T_{im}}{P_{im}V_{im}} [W_{thr}(F_{ub,bm} - F_{ub,im})] \\ \vec{x}_{11} &= \dot{F}_{b,im} = \frac{R_{im}T_{im}}{P_{im}V_{im}} [W_{cylout}(F_{ub,cylout} - F_{ub,em})] \\ \vec{x}_{13} &= \dot{F}_{ub,em} = \frac{R_{em}T_{em}}{P_{em}V_{em}} [W_{cylout}(F_{b,cylout} - F_{ub,em})] \\ \vec{x}_{13} &= \dot{F}_{b,em} = \frac{R_{em}T_{em}}{P_{em}V_{em}} [W_{cylout}(F_{b,cylout} - F_{b,em})] \\ \end{cases}$$

where P, V, T, R, γ , W, Z, I denote the pressure, volume, temperature, mass-specific gas constant, heat capacity ratio, mass flow rate, power, inertia, respectively. Subscripts of bm, im, em, comp, thr, byp, egrl, cyl, cylout, turb, wg, tc, cac, denote boost manifold, intake manifold, exhaust manifold, compressor, throttle, bypass, low pressure EGR, cylinder, cylinder out, turbine, waste-gate, turbo-charger, charge air cooler, respectively.

The cylinder charge flow rate W_{cyl} is modeled by the following speed-density equation:

$$W_{cyl} = \frac{\eta_{vol} P_{im} V_d \omega}{120 R T_{im}} \tag{S2}$$

where V_d is the displaced volume for the whole engine and η_{vol} is the volumetric efficiency. η_{vol} is derived based on the energy-balance method proposed in (Kocher et al., 2012)(Van Alstine et al., 2013).

The compressor and turbine sub-models are based on the map reduction method proposed in (Stricker et al., 2014).

2 UNKNOWN DISTURBANCE ESTIMATION

Table S1. Unknown Disturbance Estimation

State	γ_1	γ_2	μ	σ	Skewness Correction	Kurtosis Correction	$B_w(i,i)$
x_1	0.280	-1.27	8.21e4	2.99e5	eq. (S4a)	eq. (S5)	2.73e5
x_2	-0.0745	-1.57	-8.27e4	2.11e5	eq. (S3)	eq. (S5)	3.31e5
x_3	-0.0945	-0.413	-1.29e5	1.99e5	eq. (S3)	/	1.99e5
x_4	-0.309	-1.41	-26.9	276.0	eq. (S4a)	eq. (S5)	350.0
x_5	-0.0777	-1.55	-47.1	121.0	eq. (S3)	eq. (S5)	187.0
x_6	-1.61e-3	-1.65	-818.0	2011.0	eq. (S3)	eq. (S5)	3322.0
x_7	-0.576	-0.75	3.55e5	9.81e5	eq. (S4b)	/	1.34e6
x_8	0.533	-0.832	0.184	0.249	eq. (S4a)	/	0.0651
x_9	-0.533	-0.832	-0.184	0.248	eq. (S4a)	/	0.0636
x_{10}	6.98	76.3	1.05e-4	0.00724	eq. (S4a)	/	7.14e-3
x_{11}	-6.98	76.3	-1.05e-4	0.00724	eq. (S4a)	/	7.14e-3
x_{12}	3.06e-3	-0.625	-1.11e-4	5.56e-4	eq. (S3)	/	5.56e-4
x_{13}	-3.06e-3	-0.625	1.11e-4	5.56e-4	eq. (S3)	/	5.56e-4
x_{14} - x_{20}	/	/	/	/	/	/	0

$$B_w(i,i) = \sigma(i) \tag{S3}$$

$$B_w(i,i) = \sigma_i - |\mu_i| \quad if \quad \gamma_{1,i}\mu_i > 0 \tag{S4a}$$

$$B_w(i,i) = \sigma_i + |\mu_i| \quad if \quad \gamma_{1,i}\mu_i < 0 \tag{S4b}$$

$$B_w(i,i) = B_{w0}(i,i) |\gamma_{2,i}|$$
(S5)

REFERENCES

Kocher, L., Koeberlein, E., Van Alstine, D., Stricker, K., and Shaver, G. (2012). Physically based volumetric efficiency model for diesel engines utilizing variable intake valve actuation. *International*

Journal of Engine Research 13, 169–184

- Stricker, K., Kocher, L., Koeberlein, E., Van Alstine, D., and Shaver, G. M. (2014). Turbocharger map reduction for control-oriented modeling. *Journal of Dynamic Systems, Measurement, and Control* 136, 041008
- Van Alstine, D. G., Kocher, L. E., Koeberlein, E., Stricker, K., and Shaver, G. M. (2013). Control-oriented premixed charge compression ignition combustion timing model for a diesel engine utilizing flexible intake valve modulation. *International Journal of Engine Research* 14, 211–230