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APPENDIX A

The appendix details the non-trivial components of the global transformation matrix defined in Section 3.1

as
Ty Tio Tiz Tia

0 To1 Thy Toz Toy

e = Ty Tsp T3 Tsa | D
0 0 0 1
They are equal to
Ti1 = cica(cacs — $253Cq) + €1545250 + S1€45350 + S154Cq
Tor = cp[—c1c45350 — C154Cq + S104(C2C3 — 5253Cq + 51545254 — splca(s2c3 + c253¢a) — S4C254]
T31 = cplea(s2c3 + c283Ca) — 54C28a] + Spl—c1€45350 — €154Ca + S1C4(C203 — 5253Ca) + 51545254
Tio = sylci(casg + s2c3¢a) — 51€354) + cpl—C1€4525q + 51545354 + C154(C2C3 — 5253Ca) — S1€4CA]
Thy = cpsplcrcasa + s1(cas3 + s2¢3¢a) — caca5q — S4(s2¢3 + c253¢q)] — 5727[5233 — 2C3C4]
+c,27[clc4ca — (18483 + $1€452)Sq + s154(C203 — $283¢4 )]
T30 = cpspls253 — cac3Ca — (€15453 + 51C452)Sa + C1CaCa + 5154(C2c3 — 5253Cq)]
+s,27[31(0253 + s903¢q) + C10380) + 0,27 [cacasa + s4(s2cs + c283¢q)]
Ti3 = sy[—C1c45254 + 51545350 + c154(c2c3 — 5253Ca) — s1C4Ca] — cylc1(cas3 + s2c3¢0) — 51€354)
Tos = cpspls253 — cac3Ca — (€15453 + 51€452)Sa + C1CaCa + 5154(C2c3 — 5253Cq)]
—0727[81(0283 + s2c3Cq) + C10354] — 5727[0204% + s4(s2c3 + c2s3¢q)]
T33 = cpsplcacasa + sa(sacs + c253¢a) — c16354 — S1(c2s3 + sac3¢q)] — 0727[5233 — 2C3C4]
+5,27[clc4ca — (18483 + $1€452) S + s154(C203 — $283¢4)]
Ty = —dleisasq —s1(1 —ca)]
Toy = —dlcy(ci(l —ca) + s15254) + Spc2sal
T34 = dleycasa — sp(c1(l — ca) + s15284)],
(63)

where ¢, s, cq, and s, stand respectively for cos(n), sin(n), cos(a), and sin(«). And for all ¢ in
{1,2,3,4}, ¢; stands for cos(g¢;) and s; for sin(g;). Replacing, in the previous equations, (q1, g2, g3, g4) with
(a1, qA2, 943, qa4) and n with 74, it is possible to obtain the forward kinematics of leg A, namely T4,
and analogously for legs B and C.
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APPENDIX B

In this appendix, we prove the following set of expressions used to derive the general mapping in Section
3.2:

Tle + Yoo + 200 = 2d°(1 — ca) (64a)
22, = I <—1 +2Cy62> (64b)
L2
(Yee + 2ee)? = m(sy —cys2)? (64c)
L2
(Yee — Zee)2 = m(sy + Cysz)Q- (64d)

The proofs rely on different equations extracted from Sections 3.1 and 3.2, which are referred with their
associated numbering in the main text.

We first focus on the proof of (64a)). Using the following equations

Tee = Ty (1,4)

e = T, (2.4) (16)
0

Zee = Tlee<3’4>’

and the simplified formulation of T .. provided in the following equation

T = —glq, ¢ q)

Tor = —sp02(q1, 92, @) + cy93(q1, g2, @)

T3 = spgs(ar, g2, @) + cpga(qr, g2, @)

Tio = syg2(q1, g2, ) — cpg3(qr, g2, @)

Too = —2cysp94(q1, g2, ) + 0%95(% q2, @) + 3%96(% )
Tse = cpsygr(qr,q2, @) + (072; - 372;)94@17 G2, ) (10)
Ti3 = —cp92(q1, g2, @) — spgs(qr, g2, @)

Tos = cpspgr(qr, g2, ) + (C% - 372,)94@1, g2, @)

Ts3 = —2cysnga(qr, g2, @) + sigs(q1, g2, @) + g6 (g2, @)
Ty = —dhi(q,q, )

Toy = —d(cyha(qr,q2, @) + sph3(q2, )

T34 = d(cyhs(qe, o) — spha(qr, g2, o)),
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it is possible to state that

Tee = —dhy
Therefore, the squared value of each components is
2, = R
yee = d*(cih3 + sph3 + 2¢ysphahs) (66)
22, = dz(s%h% + C%h% — 2¢,5yh2h3)
So, we obtain
a2, + 2 4 22 = d*[h3 + B3 + K. (67)
In addition, based on the definition of the functions (%;);c (1 2,3} as
hi(q1,q2,) = c18250 — s1(1 — ¢a)
ha(q1, g2, ) = c1(l —ca) + 515254 (12)
h3(q2, ) = c25a,
we havd[]
( h? (c182)282 + s3(1 — ca)? — 2c181525a(1 — ¢4 )
(1 —ca)[(c152)?(1 + ca) + s3(1 — cq) — 2¢1815284]
h3 A1 —ca)? + (5152)%82 + 2c1518284(1 — cq) )
(1= ca)[B(1 = ca) + (5152)%(1 + cq) + 2¢1515254]
h3 c3s2
L (1 —ca)(1+ ca)c3
Therefore, we obtain
W+ B3+ hs = (1= ca)[l = ca + s5(1+ ca) + (1 + ca)]. (69)
So, considering that s3 + c3 = 1, we obtain
h3 +h3+hi =2(1 —cy). (70)
Therefore, by injecting (70) in (67)), we obtain the desired expression
xze+y§e+zze = 2d2(1 _Ca)' (71)
! As a preliminary remark, we should notice that s2 = 1 — ¢2, = (1 — ca)(1 + ca).
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Let us prove now (64b). From (66)), we have
2 — d%n?, (72)
which can be written, by adding 0, as

a2, = d*(h} + h3 + h3) — d*(h3 + h3). (73)

ee

The sum h? + h3 + h3 is already known in (70). The sum h3 + h3 can be derived as follows. Based on

(68)), we have
B3+ h3 = (1 —ca)[c3(1 = ca) + (5152)%(1 + ca) + 2c1515250 + (1 + ca ). (74)
By using s3 = 1 — ¢} and s3 + ¢3 = 1, (74) is equivalent to
h3 4+ h3 = (1 —co)[ci(1 — ca — 53(1 + ca)) + (1 + ca) + 2¢1515254], (75)
which can be converted into

R34+ h3 = (1—ca)[l +c3(1— 83— sdcn) — clca + ca + 2c1515254]
= (I—co)[1+ C%(C% — s%ca) +(1— c%)ca + 2¢1515284] (76)

= (1—co)[l +3(B3 — s3ca) + s2ca + 2c1515254).

Therefore, based on the definition of g; in

91(Q1, Q@) = C%(C% - S%Ca) + s%ca + 2¢1515254
92(q1,q2,) = c2(518a — c152(1 + o))
93(q1,q2,0) = (3 — 53)s254 + c151(2ca — A(1 + ¢q))
ga(q1,q2,0) = ca(c18q + s152(1 4+ ¢q)) (11)
95(q1,q2,0) = C3co + 53(c3 — s3ca) — 2c1515254
96(q2,0) = $3—cica
97(q1,q2,0) = (3 —82)(1+ca)+A(s3(1+ca) — (1 —ca)) — 2c151528q,

we obtain
ha+h3=(1—co)(1+g1). (77)

By injecting (77) into (73)), we obtain

22, = 2d%(1 — ¢p) — d*(1 — ca)(1 + g1). (78)

Using the definition of L given Section 3.2 as

L:=d\/2(1—cq), (18)
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(78) can be written as

2 oo (79)

OT - TAee = TBee = Tcee’ (8)

we have .
Tee(l, 1) = Tlee(17 1), (80)

: . .0 0 o
Based on the respective definitions of the matrices T and T, givenin

T - ) (5)

ee _Sy S:I;Cy Ca;Cy Zee

0 0 0 1

and in (10}, gives

g1 = —CyCs. (81)
Therefore, we conclude that
22 = L2 (#) (82)
Finally, let us prove and (64d) as the calculations are very similar. Based on (65]) we have
(oo +2ec)? = (03 + 1) + 202 (cysy (13 — 13) — (] — 52) o) .
(Yoo — zec)? = d2(h3 + 3) — 202(cysy(h3 — h3) — (& — sD)hahs).

The sum h3 + 13 is already known in (77). The difference i3 — h% and the product hohs can be computed
following similar calculations as before. Based on (68]), we have

B —h: = (1—ca)lcd(1 —co) + (5152)%(1 + cq) + 2c1818280 — (1 + ¢4 )3
= (1—ca)[3(1—ca) + (1 =2)s2(1 + ca) — A(1 + ca) + 2¢1515254] 84
= (1—co)[3(1 —co—53(1+cq) — (3 —s3)(1 + ca) + 2c1515254)
= —(1—ca)[f(s5(1 + ca = (1 = ca)) + (3 — s3)(1 + ca) — 2c1515250]
and
hahs = (c1(1 — cq) + s15250)C25q
= c(c1(1 = ca)sa + 515233) (85)

= (1 = ca)(c18q + s152(1 + cq))-
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Therefore, based on the definitions of g4 and g7 in (TI]), we obtain

h3 —h3=—(1—-ca)g7 (86a)
h2h3 = (1 — ca)g4. (86b)
So, we obtain
(Yee + 2ee)® = d*(1 = ca)(1+ g1) — 2d*(1 = ca)(cysygr + (¢ — 57)94) &7
(Yee — zee)? = d?(1 —ca)(1+g1) + 2d%(1 — ca)(cysngr + (0727 — 3127)94).
Moreover, based on (ED we have
T (1,1 = T, (1,1)
: o (88)
Tee(3, 2) = Tlee(3’2)’

o . . .0 0 o
which gives, based on the respective definitions of the matrices T, and T, given in () and (10),

g1 = —CyCy
CySng7 + (cf] — 5727)94 = 5.0y
Therefore, we obtain
(Yee + 2ee)? = d*(1 —ca)(1 — CyCy — 25,Cy)
(Yee — 2ee)? = d*(1 —cq)(1 — CyCs + 25,¢y).

Moreover, using the definition of a,

SySz
a, = arctan [ —4—— ,
Cy +

it can be shown that

Sz = Tcch,
by noting that ;
V0 € R, sin(arctan(d)) = Nk
Therefore, by using (91)) in (90), we obtain
(gee + 2e0)? = d2(1 = ca)(1 = ye. — TL202)
(Yee — 2ee)® = d*(1—ca)(1— CyCz + 21?5;/:)7

(89)

(90)

(15)

oD

(92)

(93)
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and after simplification it yields

d*(1—ca

(yee + Zee)2 = 1(Ty§z)(5y - Cysz)2 o4

2 d?(1—cq) 2 G2
(Yee — Zee)” = Treyes (Sy + cysz) .

which can be written, using the definition of L given in (I§)), as
L2

(Yee + zee)? = qrrarey(Sy — Cys:)?

2 L? 2 ©)
(Yee = 2ee)” = m(sy +eysz)”

APPENDIX C

In this appendix, the derivations of the equations given in Section 3.3 of the inverse kinematics model are
detailed. The calculations are relying on the following equations extracted from the Sections 3.1 and 3.2 of

the article. The transformation matrix T, is defined as

CoCy  CpSpSy — 8;Cp  CySyCy + 88z Tee

OT | S2Cy  S2SpSy tCiCr SiSyCr — CxSz o Yee 5)
- ’
ee _Sy SmCy CmCy Z@e
0 0 0 1

where, ¢ and s;, stand respectively for cos(ay) and sin(ay,), for k in {x,y, z}.

There are also the following relationships between the transformations matrices of each legs and the
global one:

T.= OTAee = TBee = Tcee : (8)

And the global transformation matrix can be simplified as

T = —gi(q,q2, @)

Tor = —sp92(q1, q2, @) + ¢y93(q1, @2, @)

T = sypg3(q1, g2, @) + cpg2(qr, g2, @)

Tio = spg2(q1, g2, ) — cpg3(qr, g2, @)

Ty = —2c¢ysp94(q1, g2, @) + 072,95(6]1, G2, @) + 572,96(927 )
T3y = cpsngr(qr, g2, ) + (3 — s2)ga(qn, g2, @)

T3 = —cpg2(q1, 2, ) — syg3(q1, g2, @) "
Tos = cpsngr(aqr, g2, ) + (c; — s2)ga(q1, g2, @)

Tss = —2cysp94(q1,q2, @) + s395(q1, @2, @) + c2g6(q2, @)
Ty = —dhi(q,q, )

Toy = —d(cyha(qr, g2, ) + syh3(q2, a))

T3y = d(cyhs(qe, a) — syha(qr, g2, @),
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where (g;)ieq1,... 7} is a family of functions defined as

g(q1.@2.a) = (3 — s3¢a) + $ica + 2c1515254
92(q1,q2, ) = ca(s15a — c152(1 4+ ¢4))
93(q1,q2,0) = (3 — 53)s254 + c151(2¢a — A(1 + ¢4))
94(q1, 02, ) = ca(c15a + s152(1 + ca))
95(q1, @2, @) = o+ 57(ch — s3¢a) — 21515254
96(612, a) = 5% — c%ca
g1(q1,q2,0) = (B3 —83) (14 ca) + A (s3(1 + ca) — (1 = ca)) — 2¢1515250,

\

and (h;);ec{1,2,3y is a family of functions defined as

hi(qi,qo, ) = c15284 — 51(1 —cq)
ho(qr, g2, ) = c1(l —cq) + 515284
h3(ga, ) = ca28q.

Y

(12)

As already stated Section 3.3, the idea of the proof is to isolate /3(g2, ) to obtain g2. From (3)), (8] and

(10), we have

Therefore, we obtain
hs(go, ) = W%dsnyee
So, by using (12), we obtain
1
cy = E(cnzee — SyYee)-

) . ) . 0
Secondly, to obtain ¢, the idea is to extract a system in c¢; and s; from the last column of T loo”

From () and (8), we have

0
Yee = Tl (]. . 3,4)

ee

Therefore, using (T0) and (12)), we obtain

Tee = d(l - CO&)Sl — ds2sa
Yee = —dcp(l—cq)er —dsasacyst — dcasasy
Zee = —dsp(l—cq)er —dsasasyst + dcasacy

(96)

O7)

(98)

99)

(100)
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Therefore, we can obtain the following system
( Tee ) _ (d(l —cq) —dsasy ) <31) ‘ (101)
—(cyYee + Sp2ee) ds95,, d(l1 —cqo)) \1

The first matrix on the right side of (TI01) is invertible as its determinant, denoted d, is equal to d((1 —
Ca)? + (5254)?) which cannot be equal to 0 as long as a # 0 [27]. This is the case in this system, as a
represents the angular deviation of the middle linkage of the leg and cannot be null. So, by inverting this

matrix, we obtain
S1 o l 1 — Cq S95q Tee
(Cl) S d (—sta 1-— ca> <—(c77yee + Snzee)) : (102)
APPENDIX D

Using the complete solution of the inverse kinematics problem provided in Section 3.3, an explicit
formulation of the matrix A, defined in

Doy frr,a(0)  Oa. fri a(u)
8;;1( (w) = | Ou, f1,8(0) O, frxB(a) |, (33)
Oay f1x,c(0) O, f1K,c(0),

A, =

can be computed as
A Arg
Ay=|Aan A, (103)
A1 Az

where all the terms are defined as

All _ _f ca(cy+ez)—sasysz+(cacy—sasysz)(1+cyc:) cASySz+sa(cy+es)

25 42(1+cycz)?[(1+ca)sfo+1—cal (I+cycz)?2+(cacys.—sasy)?

A — —fic sA(cy+ez)+easysz+sacz(1+cyc) cylea(cy+cz)—sasys:]
12 16y 25 42(1+cycz)?[(14ca) sy +1—cal (1+cycz)2+(cacysz—sasy)>

A . cp(eytcz)—spsysz+(cpey—spsysz)(1+cycz) cpsys:+sp(cy+cz)
21 —f 2521 2[(1 2 - T [teyea)?+ —spsy)?
spa(l4cycz)?[(14ca)spy+1—cal (I4eycz)?+(cpeysz—spsy) (104)

A —  —fye sp(eytcz)+epsys:+spez(1+cyc:) cylep(ey+cz)—spsys:|
22 Cy 2spa(1+cycz)?[(1+ca)shy+1—cal (I4cycz)2+(cpeys:—spsy)?

A = —f co(eytez)—sosyszt+(cocy—scsysz)(14+cycz) cosysztsc(cytc:)
31 2802(l—i—cch)Q[(1+ca)s%2+1—ca] (1+cycz)2+(cocysz—scsy)?

A —  _fac sc(ey+cez)+eosysz+soez(14cycz) cyleo(eytcz)—sosys:]
32 Cy 2sc2(1+cycz)?[(1+ca) st +1—cal (I4cycz)2+(cocysz—scsy)? "

The terms fi, fo, and f3 are defined as

fi = ta/g(cAsy+sAcysz)
fo = taplcpsy+speys:) (105)

fs = toplcosy +sceys:)

where ¢, /5 stands for tan(3).
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