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APPENDIX A
The appendix details the non-trivial components of the global transformation matrix defined in Section 3.1
as

T
0

lee =


T11 T12 T13 T14
T21 T22 T23 T24
T31 T32 T33 T34
0 0 0 1

 . (7)

They are equal to

T11 = c1c4(c2c3 − s2s3cα) + c1s4s2sα + s1c4s3sα + s1s4cα

T21 = cη[−c1c4s3sα − c1s4cα + s1c4(c2c3 − s2s3cα + s1s4s2sα]− sη[c4(s2c3 + c2s3cα)− s4c2sα]
T31 = cη[c4(s2c3 + c2s3cα)− s4c2sα] + sη[−c1c4s3sα − c1s4cα + s1c4(c2c3 − s2s3cα) + s1s4s2sα]

T12 = sη[c1(c2s3 + s2c3cα)− s1c3sα] + cη[−c1c4s2sα + s1s4s3sα + c1s4(c2c3 − s2s3cα)− s1c4cα]
T22 = cηsη[c1c3sα + s1(c2s3 + s2c3cα)− c4c2sα − s4(s2c3 + c2s3cα)]− s2η[s2s3 − c2c3cα]

+c2η[c1c4cα − (c1s4s3 + s1c4s2)sα + s1s4(c2c3 − s2s3cα)]
T32 = cηsη[s2s3 − c2c3cα − (c1s4s3 + s1c4s2)sα + c1c4cα + s1s4(c2c3 − s2s3cα)]

+s2η[s1(c2s3 + s2c3cα) + c1c3sα] + c2η[c2c4sα + s4(s2c3 + c2s3cα)]

T13 = sη[−c1c4s2sα + s1s4s3sα + c1s4(c2c3 − s2s3cα)− s1c4cα]− cη[c1(c2s3 + s2c3cα)− s1c3sα]
T23 = cηsη[s2s3 − c2c3cα − (c1s4s3 + s1c4s2)sα + c1c4cα + s1s4(c2c3 − s2s3cα)]

−c2η[s1(c2s3 + s2c3cα) + c1c3sα]− s2η[c2c4sα + s4(s2c3 + c2s3cα)]

T33 = cηsη[c4c2sα + s4(s2c3 + c2s3cα)− c1c3sα − s1(c2s3 + s2c3cα)]− c2η[s2s3 − c2c3cα]
+s2η[c1c4cα − (c1s4s3 + s1c4s2)sα + s1s4(c2c3 − s2s3cα)]

T14 = −d[c1s2sα − s1(1− cα)]
T24 = −d[cη(c1(1− cα) + s1s2sα) + sηc2sα]

T34 = d[cηc2sα − sη(c1(1− cα) + s1s2sα)],
(63)

where cη, sη, cα, and sα stand respectively for cos(η), sin(η), cos(α), and sin(α). And for all i in
{1,2,3,4}, ci stands for cos(qi) and si for sin(qi). Replacing, in the previous equations, (q1, q2, q3, q4) with
(qA1, qA2, qA3, qA4) and η with ηA, it is possible to obtain the forward kinematics of leg A, namely TAee ,
and analogously for legs B and C.
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APPENDIX B
In this appendix, we prove the following set of expressions used to derive the general mapping in Section
3.2:

x2ee + y2ee + z2ee = 2d2(1− cα) (64a)

x2ee = L2

(
1 + cycz

2

)
(64b)

(yee + zee)
2 =

L2

2(1 + cycz)
(sy − cysz)2 (64c)

(yee − zee)2 =
L2

2(1 + cycz)
(sy + cysz)

2. (64d)

The proofs rely on different equations extracted from Sections 3.1 and 3.2, which are referred with their
associated numbering in the main text.

We first focus on the proof of (64a). Using the following equations

xee = T
0

lee
(1, 4)

yee = T
0

lee
(2, 4)

zee = T
0

lee
(3, 4),

(16)

and the simplified formulation of T
0

lee
provided in the following equation

T11 = −g1(q1, q2, α)
T21 = −sηg2(q1, q2, α) + cηg3(q1, q2, α)

T31 = sηg3(q1, q2, α) + cηg2(q1, q2, α)

T12 = sηg2(q1, q2, α)− cηg3(q1, q2, α)
T22 = −2cηsηg4(q1, q2, α) + c2ηg5(q1, q2, α) + s2ηg6(q2, α)

T32 = cηsηg7(q1, q2, α) + (c2η − s2η)g4(q1, q2, α)
T13 = −cηg2(q1, q2, α)− sηg3(q1, q2, α)
T23 = cηsηg7(q1, q2, α) + (c2η − s2η)g4(q1, q2, α)
T33 = −2cηsηg4(q1, q2, α) + s2ηg5(q1, q2, α) + c2ηg6(q2, α)

T14 = −dh1(q1, q2, α)
T24 = −d(cηh2(q1, q2, α) + sηh3(q2, α))

T34 = d(cηh3(q2, α)− sηh2(q1, q2, α)),

(10)
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it is possible to state that 
xee = −dh1
yee = −d(cηh2 + sηh3)

zee = d(cηh3 − sηh2)
. (65)

Therefore, the squared value of each components is
x2ee = d2h21

y2ee = d2(c2ηh
2
2 + s2ηh

2
3 + 2cηsηh2h3)

z2ee = d2(s2ηh
2
2 + c2ηh

2
3 − 2cηsηh2h3)

. (66)

So, we obtain
x2ee + y2ee + z2ee = d2[h21 + h22 + h23]. (67)

In addition, based on the definition of the functions (hi)i∈{1,2,3} as
h1(q1, q2, α) = c1s2sα − s1(1− cα)
h2(q1, q2, α) = c1(1− cα) + s1s2sα

h3(q2, α) = c2sα,

(12)

we have1 

h21 = (c1s2)
2s2α + s21(1− cα)2 − 2c1s1s2sα(1− cα)

= (1− cα)[(c1s2)2(1 + cα) + s21(1− cα)− 2c1s1s2sα]

h22 = c21(1− cα)2 + (s1s2)
2s2α + 2c1s1s2sα(1− cα)

= (1− cα)[c21(1− cα) + (s1s2)
2(1 + cα) + 2c1s1s2sα]

h23 = c22s
2
α

= (1− cα)(1 + cα)c
2
2

. (68)

Therefore, we obtain

h21 + h22 + h23 = (1− cα)[1− cα + s22(1 + cα) + c22(1 + cα)]. (69)

So, considering that s22 + c22 = 1, we obtain

h21 + h22 + h23 = 2(1− cα). (70)

Therefore, by injecting (70) in (67), we obtain the desired expression

x2ee + y2ee + z2ee = 2d2(1− cα). (71)

1 As a preliminary remark, we should notice that s2α = 1− c2α = (1− cα)(1 + cα).
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Let us prove now (64b). From (66), we have

x2ee = d2h21, (72)

which can be written, by adding 0, as

x2ee = d2(h21 + h22 + h23)− d2(h22 + h23). (73)

The sum h21 + h22 + h23 is already known in (70). The sum h22 + h23 can be derived as follows. Based on
(68), we have

h22 + h23 = (1− cα)[c21(1− cα) + (s1s2)
2(1 + cα) + 2c1s1s2sα + (1 + cα)c

2
2]. (74)

By using s21 = 1− c21 and s22 + c22 = 1, (74) is equivalent to

h22 + h23 = (1− cα)[c21(1− cα − s22(1 + cα)) + (1 + cα) + 2c1s1s2sα], (75)

which can be converted into

h22 + h23 = (1− cα)[1 + c21(1− s22 − s22cα)− c21cα + cα + 2c1s1s2sα]

= (1− cα)[1 + c21(c
2
2 − s22cα) + (1− c21)cα + 2c1s1s2sα]

= (1− cα)[1 + c21(c
2
2 − s22cα) + s21cα + 2c1s1s2sα].

(76)

Therefore, based on the definition of g1 in

g1(q1, q2, α) = c21(c
2
2 − s22cα) + s21cα + 2c1s1s2sα

g2(q1, q2, α) = c2(s1sα − c1s2(1 + cα))

g3(q1, q2, α) = (c21 − s21)s2sα + c1s1(2cα − c22(1 + cα))

g4(q1, q2, α) = c2(c1sα + s1s2(1 + cα))

g5(q1, q2, α) = c21cα + s21(c
2
2 − s22cα)− 2c1s1s2sα

g6(q2, α) = s22 − c22cα
g7(q1, q2, α) = (c22 − s22)(1 + cα) + c21(s

2
2(1 + cα)− (1− cα))− 2c1s1s2sα,

(11)

we obtain
h22 + h23 = (1− cα)(1 + g1). (77)

By injecting (77) into (73), we obtain

x2ee = 2d2(1− cα)− d2(1− cα)(1 + g1). (78)

Using the definition of L given Section 3.2 as

L := d
√

2(1− cα), (18)
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(78) can be written as

x2ee = L2(
1− g1

2
). (79)

Moreover, based on the following equality of the transformation matrices given in Section 3.2

T
0

ee
= T

0

Aee = T
0

Bee = T
0

Cee , (8)

we have
T

0

ee
(1, 1) = T

0

lee(1, 1), (80)

Based on the respective definitions of the matrices T
0

ee
and T

0

lee
given in

T
0

ee
=


czcy czsxsy − szcx czsycx + szsx xee
szcy szsxsy + czcx szsycx − czsx yee
−sy sxcy cxcy zee
0 0 0 1

 , (5)

and in (10), (80) gives
g1 = −cycz. (81)

Therefore, we conclude that

x2ee = L2

(
1 + cycz

2

)
. (82)

Finally, let us prove (64c) and (64d) as the calculations are very similar. Based on (65) we have

(yee + zee)
2 = d2(h22 + h23) + 2d2(cηsη(h

2
2 − h23)− (c2η − s2η)h2h3)

(yee − zee)2 = d2(h22 + h23)− 2d2(cηsη(h
2
2 − h23)− (c2η − s2η)h2h3).

(83)

The sum h22+h
2
3 is already known in (77). The difference h22−h23 and the product h2h3 can be computed

following similar calculations as before. Based on (68), we have

h22 − h23 = (1− cα)[c21(1− cα) + (s1s2)
2(1 + cα) + 2c1s1s2sα − (1 + cα)c

2
2]

= (1− cα)[c21(1− cα) + (1− c21)s22(1 + cα)− c22(1 + cα) + 2c1s1s2sα]

= (1− cα)[c21(1− cα − s22(1 + cα)− (c22 − s22)(1 + cα) + 2c1s1s2sα]

= −(1− cα)[c21(s22(1 + cα − (1− cα)) + (c22 − s22)(1 + cα)− 2c1s1s2sα]

(84)

and
h2h3 = (c1(1− cα) + s1s2sα)c2sα

= c2(c1(1− cα)sα + s1s2s
2
α)

= c2(1− cα)(c1sα + s1s2(1 + cα)).

(85)
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Therefore, based on the definitions of g4 and g7 in (11), we obtain

h22 − h23 = −(1− cα)g7 (86a)

h2h3 = (1− cα)g4. (86b)

So, we obtain

(yee + zee)
2 = d2(1− cα)(1 + g1)− 2d2(1− cα)(cηsηg7 + (c2η − s2η)g4)

(yee − zee)2 = d2(1− cα)(1 + g1) + 2d2(1− cα)(cηsηg7 + (c2η − s2η)g4).
(87)

Moreover, based on (8), we have

T
0

ee
(1, 1) = T

0

lee
(1, 1)

T
0

ee
(3, 2) = T

0

lee
(3, 2),

(88)

which gives, based on the respective definitions of the matrices T
0

ee
and T

0

lee
given in (5) and (10),

g1 = −cycz
cηsηg7 + (c2η − s2η)g4 = sxcy.

(89)

Therefore, we obtain

(yee + zee)
2 = d2(1− cα)(1− cycz − 2sxcy)

(yee − zee)2 = d2(1− cα)(1− cycz + 2sxcy).
(90)

Moreover, using the definition of αx

αx = arctan

(
sysz
cy + cz

)
, (15)

it can be shown that
sx =

sysz
1 + cycz

, (91)

by noting that

∀θ ∈ R, sin(arctan(θ)) =
θ√

1 + θ2
. (92)

Therefore, by using (91) in (90), we obtain

(yee + zee)
2 = d2(1− cα)(1− cycz − 2cysysz

1+cycz
)

(yee − zee)2 = d2(1− cα)(1− cycz + 2cysysz
1+cycz

),
(93)

6
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and after simplification it yields

(yee + zee)
2 = d2(1−cα)

1+cycz
(sy − cysz)2

(yee − zee)2 = d2(1−cα)
1+cycz

(sy + cysz)
2.

(94)

which can be written, using the definition of L given in (18), as

(yee + zee)
2 = L2

2(1+cycz)
(sy − cysz)2

(yee − zee)2 = L2

2(1+cycz)
(sy + cysz)

2.
(95)

APPENDIX C
In this appendix, the derivations of the equations given in Section 3.3 of the inverse kinematics model are
detailed. The calculations are relying on the following equations extracted from the Sections 3.1 and 3.2 of
the article. The transformation matrix T

0

ee
is defined as

T
0

ee
=


czcy czsxsy − szcx czsycx + szsx xee
szcy szsxsy + czcx szsycx − czsx yee
−sy sxcy cxcy zee
0 0 0 1

 , (5)

where, ck and sk stand respectively for cos(αk) and sin(αk), for k in {x, y, z}.

There are also the following relationships between the transformations matrices of each legs and the
global one:

T
0

ee
= T

0

Aee = T
0

Bee = T
0

Cee . (8)

And the global transformation matrix can be simplified as

T11 = −g1(q1, q2, α)
T21 = −sηg2(q1, q2, α) + cηg3(q1, q2, α)

T31 = sηg3(q1, q2, α) + cηg2(q1, q2, α)

T12 = sηg2(q1, q2, α)− cηg3(q1, q2, α)
T22 = −2cηsηg4(q1, q2, α) + c2ηg5(q1, q2, α) + s2ηg6(q2, α)

T32 = cηsηg7(q1, q2, α) + (c2η − s2η)g4(q1, q2, α)
T13 = −cηg2(q1, q2, α)− sηg3(q1, q2, α)
T23 = cηsηg7(q1, q2, α) + (c2η − s2η)g4(q1, q2, α)
T33 = −2cηsηg4(q1, q2, α) + s2ηg5(q1, q2, α) + c2ηg6(q2, α)

T14 = −dh1(q1, q2, α)
T24 = −d(cηh2(q1, q2, α) + sηh3(q2, α))

T34 = d(cηh3(q2, α)− sηh2(q1, q2, α)),

(10)

Frontiers 7



Lemerle et al. Configurable 2 DOF VSA Architecture - Appendices

where (gi)i∈{1,...,7} is a family of functions defined as

g1(q1, q2, α) = c21(c
2
2 − s22cα) + s21cα + 2c1s1s2sα

g2(q1, q2, α) = c2(s1sα − c1s2(1 + cα))

g3(q1, q2, α) = (c21 − s21)s2sα + c1s1(2cα − c22(1 + cα))

g4(q1, q2, α) = c2(c1sα + s1s2(1 + cα))

g5(q1, q2, α) = c21cα + s21(c
2
2 − s22cα)− 2c1s1s2sα

g6(q2, α) = s22 − c22cα
g7(q1, q2, α) = (c22 − s22)(1 + cα) + c21(s

2
2(1 + cα)− (1− cα))− 2c1s1s2sα,

(11)

and (hi)i∈{1,2,3} is a family of functions defined as
h1(q1, q2, α) = c1s2sα − s1(1− cα)
h2(q1, q2, α) = c1(1− cα) + s1s2sα

h3(q2, α) = c2sα.

(12)

As already stated Section 3.3, the idea of the proof is to isolate h3(q2, α) to obtain q2. From (5), (8) and
(10), we have {

yee = −d(cηh2 + sηh3)

zee = d(cηh3 − sηh2)
. (96)

Therefore, we obtain
h3(q2, α) =

cηzee − sηyee
d

. (97)

So, by using (12), we obtain

c2 =
1

dsα
(cηzee − sηyee). (98)

Secondly, to obtain q1, the idea is to extract a system in c1 and s1 from the last column of T
0

lee
.

From (5) and (8), we have xeeyee
zee

 = T
0

lee(1 : 3, 4). (99)

Therefore, using (10) and (12), we obtain
xee = d(1− cα)s1 − ds2sα
yee = −dcη(1− cα)c1 − ds2sαcηs1 − dc2sαsη
zee = −dsη(1− cα)c1 − ds2sαsηs1 + dc2sαcη

. (100)

8
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Therefore, we can obtain the following system(
xee

−(cηyee + sηzee)

)
=

(
d(1− cα) −ds2sα
ds2sα d(1− cα)

)(
s1
c1

)
. (101)

The first matrix on the right side of (101) is invertible as its determinant, denoted d̃, is equal to d((1−
cα)

2 + (s2sα)
2) which cannot be equal to 0 as long as α 6= 0 [2π]. This is the case in this system, as α

represents the angular deviation of the middle linkage of the leg and cannot be null. So, by inverting this
matrix, we obtain (

s1
c1

)
=

1

d̃

(
1− cα s2sα
−s2sα 1− cα

)(
xee

−(cηyee + sηzee)

)
. (102)

APPENDIX D
Using the complete solution of the inverse kinematics problem provided in Section 3.3, an explicit
formulation of the matrix Au, defined in

Au =
∂fIK
∂u

(u) =

∂αyfIK,A(u) ∂αzfIK,A(u)
∂αyfIK,B(u) ∂αzfIK,B(u)
∂αyfIK,C(u) ∂αzfIK,C(u),

 , (33)

can be computed as

Au =

A11 A12

A21 A22

A31 A32

 , (103)

where all the terms are defined as

A11 = −f1 cA(cy+cz)−sAsysz+(cAcy−sAsysz)(1+cycz)
2sA2(1+cycz)2[(1+cα)s

2
A2+1−cα]

− cAsysz+sA(cy+cz)
(1+cycz)2+(cAcysz−sAsy)2

A12 = −f1cy sA(cy+cz)+cAsysz+sAcz(1+cycz)2sA2(1+cycz)2[(1+cα)s
2
A2+1−cα]

+
cy[cA(cy+cz)−sAsysz ]

(1+cycz)2+(cAcysz−sAsy)2

A21 = −f2 cB(cy+cz)−sBsysz+(cBcy−sBsysz)(1+cycz)
2sB2(1+cycz)2[(1+cα)s

2
B2+1−cα]

− cBsysz+sB(cy+cz)
(1+cycz)2+(cBcysz−sBsy)2

A22 = −f2cy sB(cy+cz)+cBsysz+sBcz(1+cycz)2sB2(1+cycz)2[(1+cα)s
2
B2+1−cα]

+
cy[cB(cy+cz)−sBsysz ]

(1+cycz)2+(cBcysz−sBsy)2

A31 = −f3 cC(cy+cz)−sCsysz+(cCcy−sCsysz)(1+cycz)
2sC2(1+cycz)2[(1+cα)s

2
C2+1−cα]

− cCsysz+sC(cy+cz)
(1+cycz)2+(cCcysz−sCsy)2

A32 = −f3cy sC(cy+cz)+cCsysz+sCcz(1+cycz)2sC2(1+cycz)2[(1+cα)s
2
C2+1−cα]

+
cy[cC(cy+cz)−sCsysz ]

(1+cycz)2+(cCcysz−sCsy)2
.

(104)

The terms f1, f2, and f3 are defined as
f1 = tα/2(cAsy + sAcysz)

f2 = tα/2(cBsy + sBcysz)

f3 = tα/2(cCsy + sCcysz)

, (105)

where tα/2 stands for tan(α2 ).
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