

Supplementary Material: On the efficacy of water transport in leaves. A coupled xylem-phloem model of water and solute transport

1 SUPPLEMENTARY FIGURES

Figure S1. The functional relationship between leaf area-average, xylem hydraulic pressure and secondorder vein angle. Curve descriptions and simulation conditions are as in Figure 7 in the main text except with a evaporation rate of -1.00 mmol s⁻¹ m⁻² (*i.e.* a factor of one half of the core value).

Figure S2. The functional relationship between leaf area-average, phloem hydraulic pressure and secondorder vein angle. Curve descriptions and simulation conditions are as in Figure 7 in the main text except with a evaporation rate of -1.00 mmol s⁻¹ m⁻² (*i.e.* a factor of one-second that of the core value).

Figure S3. The functional relationship between leaf area-average, phloem hydraulic pressure and secondorder vein angle. Curve descriptions and simulation conditions are as in Figure 7 in the main text except with an evaporation rate of 0.00 mmol s⁻¹ m⁻² (*i.e.* no evaporation).

Figure S4. The functional relationship between leaf area-average, xylem hydraulic pressure and secondorder vein angle. Curve descriptions and simulation conditions are as in Figure 7 in the main text except with a hydraulic pressure in the xylem of -2.00 MPa and a hydraulic pressure in the phloem of -1.80 MPa.

Figure S5. Leaf area distribution of sucrose concentration in the phloem network. Panel (a) depicts the leaf with base setting, (b) shows the leaf under a negative linear gradient in the sucrose loading distribution of -50.00% (with the sucrose loading rate higher at the petiole), while (c) shows the difference in the sucrose concentration between these two leaves. In addition, the second-order veins are aligned at 45° to the main vein (*i.e.*, 45° to the reference state of perpendicular veins).

Figure S6. The functional relationship between leaf area-average, xylem hydraulic pressure and second-order vein angle. Curve descriptions and simulation conditions are as in Figure 7 in the main text except with a negative linear gradient in the sucrose loading distribution of -50.00% (with the sucrose loading rate higher at the petiole).

Figure S7. The functional relationship between leaf area-average, phloem hydraulic pressure and second-order vein angle. Curve descriptions and simulation conditions are as in Figure 7 in main text except with a negative linear gradient of the sucrose distribution of -50.00% (with the sucrose loading rate higher at the petiole).

Figure S8. The functional relationship between leaf area-average, xylem hydraulic pressure and secondorder vein angle. Curve descriptions and simulation conditions are as in Figure 7 in the main text except with a phloem/xylem conductance (K_{ij-c}^{ph}) of 0.0005 mmol s⁻¹ MPa⁻¹ (*i.e.* a factor of one-thousandth that of the core value).

Figure S9. The functional relationship between leaf area-average, xylem hydraulic pressure and second-order vein angle. Curve descriptions and simulation conditions are as in Figure 7 in the main text except with a higher conductance of 5^{th} order veins (*i.e.* 5^{th} order veins are replaced by 4^{th} order veins).

Figure S10. The functional relationship between leaf area-average, phloem hydraulic pressure and secondorder vein angle. Curve descriptions and simulation conditions are as in Figure 7 in main text except with a higher conductance of 5^{th} order veins (*i.e.* 5^{th} order veins replaced by 4^{th} order veins).

Figure S11. The functional relationship between leaf area-average, xylem hydraulic pressure and secondorder vein angle. Curve descriptions and simulation conditions are as in Figure 7 in main text except with a lower conductance of 4^{th} order veins (*i.e.* 4^{th} order veins replaced by 5^{th} order veins).

Figure S12. The functional relationship between leaf area-average, phloem hydraulic pressure and second-order vein angle. Curve descriptions and simulation conditions are as in Figure 7 in the main text except with a lower conductance of 4^{th} order veins (*i.e.* 4^{th} order veins replaced by 5^{th} order veins).

Figure S13. The functional relationship between leaf area-average, phloem hydraulic pressure and second-order vein angle. Curve descriptions and simulation conditions are as in Figure 7 in the main text except with a uniform second-order vein conductance of $K^{xyl} = 100K^{ph}/3 = 1 \times 10^{-4} \text{ mmol s}^{-1} \text{ m}^{-2}$ (*i.e.* a factor of one-fifth that of the core value).

Figure S14. The functional relationship between leaf area-average, phloem hydraulic pressure and second-order vein angle. Curve descriptions and simulation conditions are as in Figure 7 in main text except with a uniform second-order vein conductance of $K^{xyl} = 100K^{ph}/3 = 2.5 \times 10^{-3} \text{ mmol s}^{-1} \text{ m}^{-2}$ (*i.e.* an increase by a factor of 5 of the core value).

Figure S15. The functional relationship between leaf area-average, xylem hydraulic pressure and secondorder vein angle. Curve descriptions and simulation conditions are as in Figure 7 in the main text except with a fixed total vein number and fixed spacing of branching points (*i.e.*, in the absence of the constraint of fixed total 2^{nd} order vein length).

Figure S16. Leaf area distribution of the difference between the xylem hydraulic pressure and the phloem total pressure in the leaf with 2^{nd} order veins aligned 45° to the main vein. Notice that the legend is log(MPa) to improve readability.

Figure S17. The functional relationship between leaf area-average, the pressure difference (between the xylem hydraulic pressure and the phloem total pressure) and second-order vein angle. Curve descriptions and simulation conditions are as in Figure 7 in the main text.