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1 EQUAL COEFFICIENTS FOR MODELS WITH AND WITHOUT INTERCEPT
The coefficients vector β1:p (excluding the intercept β0) obtained from a model including an intercept is
the same as the β obtained from a model without an intercept but where the X and y have been centered.
To prove this, let us start with Ridge regression. First, let us consider a model without intercept where we
are centering the data using x̄ = 1

nX>1 ∈ Rp (column means of X) and ȳ = 1
ny>1 ∈ R (mean of y). The

loss function and its gradient are given by

L(β) = ||(y − 1ȳ)− (X− x̄1>)β ||22 + λ ||β||22
∇β L(β) = 2(X− x̄1>)>[(X− x̄1>)β − (y − 1ȳ)] + 2λβ.

Setting the gradient to zero and rearranging we arrive at

(X>X− n · x̄x̄> + λI)β = (X− x̄1>) (y − ȳ1). (S1)

Conversely, let us assume that the data has not been centered and the model includes an intercept β0, that
is β = [β0,β1:p]. We will not augment X with a column of ones but instead write the intercept explicitly.
This leads to the loss function

L(β) = ||y −Xβ1:p − 1β0 ||22 + λ ||β1:p||22.

The gradients w.r.t to β0 and β1:p are given by

∇β0
L(β) = 2 · 1>(Xβ1:p + 1β0 − y)

= 2 · n (x̄>β1:p + β0 − ȳ)

∇β1:p
L(β) = 2X>(Xβ1:p + 1β0 − y) + 2λβ1:p.

Setting both gradients to zero yields the solution for β0

β0 = ȳ − x̄>β1:p

which can be inserted into the gradient for β1:p

(X>X + λI)β1:p + x̄β0 = X>y

⇐⇒ (X>X− n · x̄x̄> + λI)β1:p = X>y − n · x̄ȳ.
(S2)
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Comparing Eq. (S1) and Eq. (S2) we can see that the solutions for models with and without intercept are
identical. This result immediately generalizes to OLS (set λ = 0) and Kernel Ridge regression (replace X
by Φ(X)).

2 ZERO CORRELATION CONSTRAINT
Here, we use the Lagrangian multipliers approach to derive the solution for a zero correlation constraint. We
will start with the OLS model and then show the equivalent results in Ridge and Kernel Ridge regression.
In matrix notation, the constrained OLS optimization problem can be written as

minimize
1

2
||y −Xβ||2

subject to corr(y,y − ŷ) = 0

where the scaling factor 1
2 does not affect the solution. Note that corr(y,y − ŷ) = 0 implies zero

covariance, that is cov(y,y − ŷ) = 0. If we expand the covariance term the constraint simplifies to

||y||2 − y>Xβ = 0. (S3)

We can now use the Lagrangian multiplier µ to incorporate the constraint into the objective function:

L(β) =
1

2
||y −Xβ||2 − µ (||y||2 − y>Xβ).

The gradient of L w.r.t to β is given by

∇β L(β) = X>(Xβ − y) + µX>y.

Setting the gradient to zero, writing θ = 1− µ and solving for β yields

b = θ (X>X)−1 X>y (OLS).

In other words, the solution is the standard OLS solution βols = (X>X)−1 X>y scaled by the factor θ.
Inserting b into Eq. (S3) yields

θ =
||y||2

y>H y
(S4)

with H = X (X>X)−1X>. For OLS, it can be further noted that the denominator is equal to

y>H y = y>H>H y = ||ŷ||2

where ŷ are the predictions under the OLS model and H = H>H follows from H’s idempotence and
symmetry. For Ridge regression and Kernel Ridge, using a similar derivation we obtain
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b = θ (X>X + λI)−1 X>y (Ridge)

b = θ (Φ(X)>Φ(X) + λI)−1 Φ(X)>y (Kernel Ridge).

Eq. (S4) still holds, but the hat matrices are given by

H = X (X>X + λI)−1 X> (Ridge)

H = Φ(X) (Φ(X)>Φ(X) + λI)−1 Φ(X)>

= Φ(X)Φ(X)> (Φ(X)Φ(X)> + λI)−1

= K (K + λI)−1 (Kernel Ridge).

In all cases, the loss function is convex and the constraint is linear, so the optimization problem is convex.
Therefore, the first order stationarity condition is sufficient and the solution represents a unique global
minimum.

3 BOUNDED CORRELATION CONSTRAINT
Here, we use the Karush-Kuhn-Tucker (KKT) approach to derive the OLS solution for a bounded
correlation constraint. There is two possible scenarios to consider: First, if we have |corr(y, e)| < ρ
for the unconstrained problem, none of the constraints is active and we are done. Otherwise, we have
corr(y, e) = ρ or corr(y, e) = −ρ. If we consider corr(y, e) = ρ first, we can expand the correlation term
to

y>(y − ŷ)

||y|| ||y − ŷ||
= ρ (S5)

which rearranges to

||y||2 − y>ŷ − ρ ||y|| ||y − ŷ|| = 0. (S6)

We can now define the Lagrangian function

L(β) =
1

2
||y −Xβ||2 − µ (||y||2 − y>ŷ − ρ ||y|| ||y − ŷ||)

whose gradient w.r.t to β is given by

∇βL(β) = X>(Xβ − y) + µX>y + µρ
||y||
||y − ŷ||

X>y − µρ ||y||
||y − ŷ||

X>Xβ.

Setting the derivative to zero gives us the solution
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β = (X>X)−1 X>y (1− µ− µρ ||y||
||y − ŷ||

)(1− µρ ||y||
||y − ŷ||

)−1

or alternatively

β = (X>X)−1 X>y (1 +
µ

1− µρ ||y||
||y−ŷ||

).

Since the last term is a scalar, the solution, if it exists, is again a scaled version of the OLS solution. The
same result is obtained for the case corr(y, e) = −ρ, with a sign reversal for the terms containing ρ. In
other words, we are looking for an optimal scaling term θ ∈ R. Since the scaling of β implies scaling of ŷ
by the same amount, we can find the solution by performing a line search and solving Eq. (S6) for θ:

||y||2 − y>(θ ŷ)− ρ ||y|| ||y − (θ ŷ)|| = 0.

After squaring both sides and rearranging one obtains

θ2 [(y>ŷ)2 − ρ2||y||2||ŷ||2]− 2θ||y||2 y>ŷ (1− ρ2) + ||y||4 (1− ρ)2 = 0.

We can divide by c := (y>ŷ)2 − ρ2||y||2||ŷ||2 and complete the square. This requires that c 6= 0 and
hence corr(y, ŷ) 6= ρ2, which needs to be verified first. We then arrive at the two solutions

θ1,2 = ||y||2 y>ŷ (1− ρ2)/c± ||y||
2

|c|

√
ρ2 (1− ρ2) (||y||2 ||ŷ||2 − (y>ŷ)2).

The roots are always real numbers since 0 ≤ ρ2 ≤ 1 and ||y||2 ||ŷ||2 ≥ (y>ŷ)2. The two solutions for θ
define values for which corr(y, e) = −ρ and corr(y, e) = ρ, respectively.
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