PAA modified upconversion nanoparticles for highly selective and sensitive detection of Cu^{2+} ions

Shaoshan Su, Zhurong Mo, Guizhen Tan, Hongli Wen*, Xiang Chen*, D. A. Hakeem*

Key Laboratory of Clean Chemistry Technology of Guangdong Regular Higher Education Institutions, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P.R. China

*Corresponding author:

E-mail addresses: hongliwen@gdut.edu.cn (H. Wen); chenxiang@gdut.edu.cn (X. Chen); abdulhakeem.desh@gdut.edu.cn (D. A. Hakeem)

Fig. S1 TGA curves of ligand free NaYb_{0.5}Nd_{0.5}F₄@NaYb_{0.5}Gd_{0.49}Tm_{0.01}F₄@NaGdF₄ UCNPs and PAA coated NaYb_{0.5}Nd_{0.5}F₄@NaYb_{0.5}Gd_{0.49}Tm_{0.01}F₄@NaGdF₄ UCNPs, respectively.

Fig. S2 TEM images (a and c) and size distribution (b and d) of the as-prepared core of $NaYb_{0.5}Nd_{0.5}F_4$ and core-shell structure with composition of $NaYb_{0.5}Nd_{0.5}F_4@NaYb_{0.5}Gd_{0.49}Tm_{0.01}F_4$ nanoparticles, respectively.

Fig. S3 Double-logarithmic plots of the pump-power dependent upconversion emission intensity from Tm^{3+} emission at 344 nm recorded under 980 nm excitation.

Table S1.	Comparison	of the PAA-UC	NPs nanoplatform	n with the oth	her reported p	latforms for the
Cu ²⁺ detec	ction.					

Probes	Analytes/exc itation wavelength	LOD	Linear range	reference
$\begin{array}{l} PAA- \\ NaYb_{0.5}Nd_{0.5}F_4@NaYb_{0.5}Gd_{0.49}T \\ m_{0.01}F_4@NaGdF_4 \end{array}$	Cu ²⁺ / 980 nm	0.1 μΜ	0.125–3.125 μM	This work
TPEA-Carbon quantum dots	Cu ²⁺ / 405 nm	10 nM	10 ⁻⁶ –10 ⁻⁴ M	1
Rhodamine B-SiO ₂ coated NaYF ₄ :Yb,Er@NaYF ₄	Cu ²⁺ / 520 nm	0.82 μΜ	_	2
Carboxyl-modified CdTe QDs	Cu ²⁺ / 340 nm	0.36 nM	0 to 100 nM	3
PEI-capped NaGdF ₄ :Yb/Tm	Cu ²⁺ / 980 nm	57.8 nM	0.1-2 μM	4
TSPP-NaYF4:Yb,Er,Gd@SiO2	Cu ²⁺ / 980 nm	2.16 µM	5 μM–0.16 mM	5
$Rd-NH_2-\beta-NaYF_4:Yb^{3+}/Er^{3+}$	Cu ²⁺ / 980 nm	-	2–14 µM	6
RB-hydrazide-NaYF4:Yb ³⁺ /Er ³⁺	Cu ²⁺ / 980 nm	10 ⁻⁶ M	10^{-5} to 10^{-6} M	7

*TPEA = ([N-(2- aminoethyl)-N,N,N' -tris(pyridin-2-ylmethyl) TSPP = meso-tetra(4-sulfonatophenyl)porphine dihydrochloride Rd-NH₂ = 2-amino-3',6'-bis(ethylamino)-2',7'-dimethyl-3',9a'-dihydrospiro[isoindoline-1,9'xanthen]-3-one

References:

- Q. Qu, A. Zhu, X. Shao, G. Shi and Y. Tian, Development of a carbon quantum dots-based fluorescent Cu²⁺ probe suitable for living cell imaging, Chem. Commun., 48(2012)5473-5475.
- Y.X. Xu, H.F. Li, X.F. Meng, J.L. Liu, L.N. Sun, X.L. Fan, L.Y. Shi, Rhodamine-modified upconversion nanoprobe for distinguishing Cu²⁺ from Hg²⁺ and live cell imaging, New J. Chem., 40(2016)3543-3551.
- Y.H. Wang, C. Zhang, X.C. Chen, B. Yang, L. Yang, C.L. Jiang, Z.P. Zhang, Ratiometric fluorescent paper sensor utilizing hybrid carbon dots-quantum dots for the visual determination of copper ions, Nanoscale, 8(2016)5977-5984.
- F. Wang, C. Zhang, Q. Xue, H. Li, Y. Xian, Label-free upconversion nanoparticles-based fluorescent probes for sequential sensing of Cu²⁺, pyrophosphate and alkaline phosphatase activity, Biosens. Bioelectron., 95(2017)21-26.
- X. Huang, L. Wang, X. Zhang, X. Yin, N. Bin, F. Zhong, et al., Dye-assembled nanocomposites for rapid upconversion luminescence sensing of Cu²⁺, Sens. Actuators B Chem., 248(2017)1-8.
- X. Jiang, G. Meng, A rhodamine-based sensing probe excited by upconversion NaYF₄:Yb³⁺/Er³⁺ nanoparticles: The realization of simple Cu(II) detection with high sensitivity and unique selectivity, J. Lumin., 135(2013)227-231.
- J. Zhang, B. Li, L. Zhang, H. Jiang, An optical sensor for Cu(ii) detection with upconverting luminescent nanoparticles as an excitation source, Chem. Commun., 48(2012)4860-4862.