

Supplementary Material

"Enhanced Water Purification Performance of Ionic Liquid Impregnated MOF: Dye Removal by [BMIM][PF6]/MIL-53(Al) Composite"

Figure S1. Structure of (A) cationic dye methylene blue (MB), (B) anionic dye methyl orange (MO)

Figure S2. Solubility results of N₂ in bulk [BMIM][PF6] obtained by COSMO-RS calculations.

Figure S3. MB/MO removal selectivity of pristine MIL-53(Al) (black) and [BMIM][PF₆]/MIL-53(Al) composite (red).

Adsorbents	Dyes	q _{e,exp} (mg/g)	k1 (1/min)	q _{e,cal} (mg/g)	<i>R</i> ²	RMSE
MIL-53(Al)	MB	123.22	1.94×10^{-2}	97.27	0.924	0.275
	МО	25.46	1.32×10^{-2}	14.45	0.830	0.412
[BMIM][PF ₆]/ MIL-53(Al)	MB	162.88	1.99×10^{-2}	29.48	0.579	0.649
	МО	47.12	1.63×10^{-2}	20.14	0.850	0.387

Table S1. The pseudo-first-order kinetic constants (k_I) together with correlation coefficients (R^2) of MIL-53(Al), and [BMIM][PF₆]/MIL-53(Al).

Table S2. The pseudo-second-order kinetic constants (k_2) together with correlation coefficients (R^2) of MIL-53(A1), and [BMIM][PF₆]/MIL-53(A1).

Adsorbents	Dves	$q_{e,exp}$ k_2		q e,cal R ²		PMSE
	Dyes	(mg/g)	(g/(mg min))	(mg/g)	Λ	
MIL-53(Al)	MB	123.22	6.90×10^{-4}	123.46	0.980	0.141
	МО	25.46	9.62×10^{-3}	25.32	0.997	0.055
[BMIM][PF6]/ MIL-53(Al)	MB	162.88	7.02×10^{-3}	163.93	0.999	0.032
	МО	47.12	6.36×10^{-3}	47.62	0.999	0.032

			Langmuir Model			Freundlich Model				
Adsorbents	Dye	$q_{e,exp}$	K_L	q _{max}	R ²	DMCE	K_F	n	R ²	DMCE
Ausorbents		(mg/g)	(L/mg)	(mg/g)	Λ	KINSE	(mg/g)	(g/L)	A	KINSE
MIL-53(Al)	MB	84.546	0.371	78.125	0.949	0.226	93.504	43.29 0	0.0102	0.995
	МО	44.089	1.421	46.296	0.991	0.095	21.909	5.120	0.676	0.569
[BMIM][PF ₆]/	MB	204.905	4.083	204.082	0.999	0.032	149.038	11.62 8	0.934	0.257
MIL-53(Al)	МО	60.283	0.182	57.803	0.991	0.095	147.496	5.133	0.0817	0.958

Table S3. Langmuir and Freundlich isotherm parameters of MIL-53(Al), and [BMIM][PF₆]/MIL-53(Al).

Figure S4. Characteristic FTIR peaks of (**A**) MB, and (**B**) MO dyes on MB adsorbed (blue), MO adsorbed (orange), and mixture of MB and MO adsorbed (olive) [BMIM][PF₆]/MIL-53(Al). Black line represents the FTIR spectrum of [BMIM][PF₆]/MIL-53(Al) before dye adsorption.

MOF Related Peaks (cm ⁻¹)	IL/MOF Composite (cm ⁻¹)	MB-adsorbed IL/MOF Composite (cm ⁻¹)	MO-adsorbed IL/MOF Composite (cm ⁻¹)	Mixture-adsorbed IL/MOF Composite (cm ⁻¹)	Assignment
658	654	+4	-	+4	v _s (Al-O-Al)
687	668	+1	-	+1	v_{as} (Al-O-Al)
3706	3700	-17	-	-3	μ2(О-Н)

Table S4. Shifts in the characteristic FTIR peaks of MOF after dye adsorption (relative to the IL/MOF composite).

Table S5. Changes in the characteristic FTIR peaks of IL after dye adsorption (relative to the IL/MOF composite).

IL Related Peaks (cm ⁻¹)	IL/MOF Composite (cm ⁻¹)	MB-adsorbed IL/MOF Composite (cm ⁻¹)	MO-adsorbed IL/MOF Composite (cm ⁻¹)	Mixture-adsorbed IL/MOF Composite (cm ⁻¹)	Assignment
737	731	+4	-4	+1	v_{as} (PF ₆) of IL's anion
837	837	+3	-	+1	v_{as} (PF ₆) of IL's anion
3124	3118	-1	+3	-	v(C(2)-H) of IL's cation
3170	3162	-3	+3	-	$v_{ss}(C(4)HC(5)H)$ of IL's cation

Table S6. Changes in the characteristic FTIR peaks of MB after dye adsorption (relative to the IL/MOF composite).

MB Related Peaks (cm ⁻¹)	IL/MOF Composite (cm ⁻¹)	MB-adsorbed IL/MOF Composite (cm ⁻¹)	MO-adsorbed IL/MOF Composite (cm ⁻¹)	Mixture-adsorbed IL/MOF Composite (cm ⁻¹)	Assignment
885	-	newly formed	-	newly formed	N _{het} HO
1334	-	-7	-	-7	$\nu(C_{het}-N)$
1355	-	-4	-	-4	v(C=S ⁺)
1390	-	+2	-	+2	$\delta(C_{het}-H)$
1590	-	+5	-	+5	$v_{ip}(C_{het}-H)$
between 1690-1710	-	-4	-	-2	$\nu(C_{het}=N^+(CH_3)_2)$

Table S7. Changes in the characteristic FTIR peaks of MO after dye adsorption (relative to the IL/MOF composite).

MO Related Peaks (cm ⁻¹)	IL/MOF Composite (cm ⁻¹)	MB-adsorbed IL/MOF Composite (cm ⁻¹)	MO-adsorbed IL/MOF Composite (cm ⁻¹)	Mixture-adsorbed IL/MOF Composite (cm ⁻¹)	Assignment
1004	-	-	-2	-2	v(N-(CH ₃) ₂)
1036	-	-	-11	-10	$\nu(SO_3)$
1113	-	-	+2	+2	v(C-SO ₃)
1195	-	-	-22	-23	v(S=O)
1420	-	-	-5	-6	v(N=N)
1444	-	-	-5	-6	v(N=N)
1518	-	-	-6	-3	v(C-N(CH ₃) ₂)