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1 Analytical strategy 

The analytical strategy follows (Conrad and Clark 1987) for a discrete, finite time, stochastic 

dynamic programming model.  We assume there is a base level of seropositive cattle present in the 

herd ranging from 0 to 100%.  First, given this is a dynamic programming model, the state variable 

indicating new infections, 𝑋𝑡 , is observed before selecting the diagnostic testing decision, 𝑌𝑡.  Here, 

t=0,1,…,T represent the time periods with k representing the remaining time periods. For this study 

T=2.  Next, we assume the test decision 𝑌𝑡 and a random effect 𝑤𝑡 occur in period t with k remaining 

time periods. The stochastic equation to identify future states in the stochastic process takes the form  

𝑓(𝑋𝑡+1) = 𝑓(𝑋𝑡 , 𝑌𝑡 , 𝑤𝑡) 

where the state variable 𝑋𝑡 =1 indicates the presence of new infections and 𝑋𝑡= 0 indicates otherwise. 

The diagnostic testing decision 𝑌𝑡 is a discrete variable of 𝑌𝑡 = 1 for diagnostic testing and treatment 

and 𝑌𝑡 = 0 signifies no testing but post-infection treatment.  Note that there are additional options that 

include 𝑌𝑡 = 2 for preventative treatments. The random variable 𝑤𝑡 is iid with binary outcomes 1 or 0, 

with probability of infection, 𝛾, and with probability of no infection, 1 − 𝛾.  

Defining the value function 𝐽𝑘(𝑥) as the minimum total discounted expected costs with 𝑘 

periods remaining, given 𝑋 = 𝑥, 𝑌 = 𝑦 and assuming a conditional probability distribution with the 

random effect 𝑊 = 𝑤, the optimization problem becomes: 

𝐽𝑘+1(𝑋) = min
𝑌

{𝐶(𝑋, 𝑌) + 𝑟𝐸{𝐽𝑘(𝑓(𝑋, 𝑌,𝑊))}} 

where r is the discount factor. Here, r=0.04 for the empirical analysis.  We apply backwards iteration 

to retrieve the optimal policy and minimized discounted expected cost of losses, conditional on 

infection state and test decision.  

 The empirical analysis further assumes that once animals are diagnostically tested, they can be 

identified as seropositive or not, and managed accordingly. Once infected, with no preventative 

treatment during the production season, we assume animals stay infected and recover or are removed 

from the herd. Likewise, once tested and treated, we assume animals remain uninfected during the 

production season. Animals removed from the herd are replaced at current market prices. Terminal 

values for each state are the discounted present value in perpetuity for the specific control.   
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The option to diagnostic test and vaccinate is the dominate and optimal policy across parameter 

values.  Table S1 provides outcomes of the model for selected parameters across the control options.  

These values reflect costs in years 1 and 2, as well as costs at the terminal values.  High levels of 

seronegative herds have larger number of cattle at risk and, consequently, higher control costs. Higher 

random infection rates increased the cost of no preventative actions with only post-infection treatment.   

Table S1  Outcomes of the dynamic programming model for selected parameters.   

 Seronegative Level in Herd 
Random 

Infection  0.9 0.5 0.1 

Control Total $ Total $ Total $ 

No Preventative Action, Post-Infection Treatment $47,512 $45,840 $44,168 0.7 

No Preventative Action, Post-Infection Treatment $32,646 $26,470 $20,294 0.3 

Preventative Chlortetracycline Feed Additive Entire Herd $37,260 $37,260 $37,260 0.3 

Preventative Vaccination  Entire Herd $31,509 $31,509 $31,509 0.3 

Diagnostic Test and Antibiotic Treatment $92,282 $51,890 $11,498 0.3 

Diagnostic Test and Vaccination $29,058 $16,455 $3,851 0.3 

Diagnostic Test and Chlortetracycline Feed Additive $34,934 $20,030 $5,126 0.3 
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Figure S1 shows an illustrative diagram for t=0,1,2 periods to determine optimal testing policies 

between controls Y=0 and Y=1.  The initial state is X0 =0 with random probability, 𝛾 = 2/3. Once 

infected, we assume animals remain infected. Additional controls applied in this study have identical 

structure as Y=1 above. Likewise, once tested and treated or treated with preventative treatments, we 

assume animals remain uninfected during that period. 
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2 Sensitivity Analysis 

For each expected cost analysis, a gamma distribution was used to assess the confidence in parameter 

estimates. For the mortality rates, a beta distribution was assumed. Data to determine the distributions 

came from expert opinion and was cross referenced with extant literature.  

 

 

 

Figure S2 Relationship between the expected average cost of anaplasmosis costs and losses with 

expected mortality rates. Variation in treatment costs is included in the calculation.  
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