
1

Supplementary Materials for SpikePropamine:
Differentiable Plasticity in Spiking Neural
Networks
Samuel Schmidgall, Julia Ashkanazy, Wallace Lawson, Joe Hays ∗

U.S. Naval Research Laboratory, Washington D.C., United States
Correspondence*:
Joe Hays
joe.hays@nrl.navy.mil

1 SUPPLEMENTARY
1.1 SLAYER Implementation2

The original code for SLAYER1, specifically the PyTorch version, was developed in CUDA to support a3
specific type of learning where the information regarding the temporal dataset was required to be known4
a-priori. In this assumed domain, a single network output was attributed to a single interaction episode,5
where the membrane potential was reset between these episodes. These dynamics do not support the type of6
flexible interactions required by RL problems, since often the interaction boundary is variable and actions7
must be evaluated many times before the membrane potential is reset. Toward this effort, we modified the8
SLAYER PyTorch library to accommodate RL applications at the low-level as well as having developed a9
complimentary RL framework using PPO to fit our needs. The modified SLAYER and PPO framework10
supports learning on the SRM model described in our experiments.11

1.2 Input Population Representation12

Specified here is the input population representation used for the high-dimensional locomotion13
experiment:14

∀m ∈ {0, 1, ..., Pdim − 1},∀ξ ∈ {0, 1, ..., Pnum − 1},
Ωξ,m = Pξ,min(m− Pnum)− Pξ,max(Pnum −m)

(1)

15
Pr[s

(0)
ξ,m = 1] = max(ϑmin,min(exp(−15(Ωξ,m − xξ)2), 1)). (2)

Here, the initial number of input sub-populations are defined as Pnum ∈ N and indexed by ξ ∈ N, which16
correspond to the number of floating point values in the pre-converted input vector. Additionally, an initial17
neuron population size, Pdim ∈ N, is specified to represent each floating point input and indexed by18
m ∈ N. Using this population, the minimum and maximum state values, Pξ,max ∈ R and Pξ,min ∈ R, are19
represented by the first and last neuron in the population, and each neuron in-between is an intermediate20
value, Ωξ,m ∈ R, linearly distributed based on the population size (1). Once the place cells are appropriately21
represented and an incoming stimulus, xξ , is present, the probability of spiking for each neuron is assigned22
using an exponentially decaying probability distribution (2). The exponential reaches its maximum value23

around the place neuron, s(0)ξ,m, that most closely resembles the incoming stimuli xξ, with each subsequent24

neuron in the population having a likelihood representative of the distance from this initial cell (Ωξ,m−xξ)2.25

1 https://github.com/bamsumit/slayerPytorch

1



Schmidgall et al. Supplementary Materials: Differentiable Plasticity in SNNs

Additionally, a pre-defined spike probability, ϑmin ∈ R, is assigned globally to each neuron independent26
from the distance, which was experimentally shown to improve performance on this task. We note here27

that the spike-activity produced by (1-2), s(0)ξ,m, directly corresponds to the spike input defined in Section 2.28

1.3 Action Population Representation29

Ap =
1

T

T∑
t=0

(
N∑
n=0

wnSn(t)) (3)

where Ap ∈ R denotes the action produced over a sub-population p ∈ N. The ordered-tuple of sub-30
population actions A = (A0, A1, ..., Ad) produces the final action for each actuated joint p, where d ∈ N is31
equal to the number of actuated joints. The variable T ∈ N represents the discrete time interval duration32
from which the action is averaged over. Additionally, N ∈ N represents the total number of neurons in the33
action sub-population. Sn(t) ∈ {0, 1} is the binary spike output of neuron n at time t, and wn ∈ R weights34
the spike. In this experiment, wn = 1 for half of the population n < N

2 , and otherwise wn = −1. This35
produces a natural mapping over the interval [−1, 1] for each sub-population Ap, where simple shifting and36
scaling enables representation over arbitrary intervals.37

1.4 Hardware38

Installed Physical Memory (RAM): 64.0 GB39
Graphics Card: NVIDIA Quadro P2000, 5 GB GDDR5, 1024 CUDA cores40
Processor: Intel Xeon W-2125 CPU 4.00GHz, 4 Core(s), 8 Logical Processor(s)41

1.5 Neuron Model Hyperparameters42

Provided is a list of the neuron model hyperparameters used for the experiments in this paper. The43
SRMALPHA neuron type is originally described in the SLAYER code repository. We note that in practice,44
the behavior of the system acts independent of the defined metric units.45

Hyperparameter Table
Neuron Type SRMALPHA
Threshold 10 (mV)
Neuron time constant 10 (ms)
Network integration time 1 (ms)
Refractory time constant 2 (ms)
Neuron relative refractory response scaling 2
Spike function derivative time constant 1
Spike function derivative scale factor 1

46

This is a provisional file, not the final typeset article 2



Schmidgall et al. Supplementary Materials: Differentiable Plasticity in SNNs

1.6 Cue-Association Training Details47

Hyperparameter Table
Cue Labels 2
Total Presented Cues 7
Cue Presentation Time 25 (ms)
Noise Population Neurons 10
Cue Population Neurons 10 × 3
Horizon 500 (Steps)
Discount (λ) 0.99
Adam Timestep 5 ×10−4 × α
Cue Spike Event Prob 0.75
Cue Spike Rest Prob 0.05
Noise Spike Rest Prob 0.2
Cue Spike Event Prob (Noisy) 0.65
Cue Spike Rest Prob (Noisy) 0.25
Noise Spike Rest Prob (Noisy) 0.4
Rest Period r ∼ {45, 75, 105}(ms)

48

1.7 Cue-Association: Neuronal Activity49

Here we provide additional insights for the neuronal activity during the cue-association task. The highest50
performing network from Experiment 1, NDP-BCM, is used for analysis.51

Four cue-association cases are considered: a typical random sensory input sequence, all left cues, all right52
cues, and one with no sensory cues except for spike-noise. Interestingly, each of the output modulatory53
signal graphs exhibit a loose symmetry (Figures 6-9). The hidden modulatory signals follow a similar54
dynamic pattern. In the first three sequences (Figures 6-8), the weight values tend to both potentiate and55
depress during the cue presentation, with a stronger emphasis on negatively valued weights. The weights56
then seem to depress significantly during the period in which cues are absent only to potentiate again in the57
presence of the decision cue. However, in the fourth sequence (Figure 9), when no signals are present, the58
weight values do not meaningfully potentiate, and also do not depress beyond an initial range of values.59
The hidden modulatory activity in this case does not follow a pattern resembling the first three sequences,60
and seems to develop without much pattern at all. While the output modulatory signals do still exhibit a61
symmetry, it is the only scenario in which the signals strictly diverge from each other. It is evident that the62
plasticity and neuromodulatory signals have a strong effect on self-organization during the cue period, with63
a large population of weights undergoing drastic changes from experience-dependent activity.64

Frontiers 3



Schmidgall et al. Supplementary Materials: Differentiable Plasticity in SNNs

Figure 1. Typical Cue Sequence

This is a provisional file, not the final typeset article 4



Schmidgall et al. Supplementary Materials: Differentiable Plasticity in SNNs

Figure 2. Only Left Cues (Blue)

Frontiers 5



Schmidgall et al. Supplementary Materials: Differentiable Plasticity in SNNs

Figure 3. Only Right Cues (Red)

This is a provisional file, not the final typeset article 6



Schmidgall et al. Supplementary Materials: Differentiable Plasticity in SNNs

Figure 4. No Sensory Input

Frontiers 7



Schmidgall et al. Supplementary Materials: Differentiable Plasticity in SNNs

1.8 Half-Cheetah Training Details65

To compute the advantage for the Proximal Policy Optimization gradient update, Generalized Advantage66
Estimation (GAE) is used.67

Hyperparameter Table
Horizon 3000 (Steps)
PPO Epochs 10
Adam Timestep 5 ×10−4 × α
Discount (γ) 0.99
GAE lambda (λ) 0.97
PPO Updates 1500
Random Spike Prob (ϑmin) 0.05
Action Integration Interval (T) 50 (ms)

68

1.9 High-dimensional Robotic Locomotion: Neuronal Activity69

Here we provide additional insights into the internal neuronal activity for the robotic locomotion task. On70
this task, results are shown using with the highest-performing network from Experiment 1, NDP-Oja’s.71

(Figure 10 (A-D)) shows the modulatory behavior in the first hidden layer using the same network for72
two scenarios: when the robot is flipped on it’s back (Figure 10 (A)), and when the robot is successfully73
performing locomotion (Figure 10 (B)). In both of these cases the action output layer is amplified by74
±N (0, 30)% action noise at each timestep. In the case of successful locomotion (Figure 10 (B)), it is75
observed that each modulatory signal oscillates within a set region determined within 50 timesteps of the76
simulation. The majority of signals cluster around 0, however some signals are distributed within the range77
of ±4. When deprived of sensory stimuli in the flipped scenario (Figure 10 (A)) the signals still seem78
to display a similar distribution, however they do not exhibit nearly any oscillations. Additionally, these79
signals are notably larger than the hidden layer signals in the cue-association task, and do not display the80
same characteristic movement. Perhaps this noisy distribution plays a critical role in the adaptive behavior81
observed in Experiment 2.82

This is a provisional file, not the final typeset article 8



Schmidgall et al. Supplementary Materials: Differentiable Plasticity in SNNs

Figure 5. Neuromodulatory activity in hidden layer with ±N (0, 30)% action noise when (AA) robot is
flipped on back and (AB) successfully solves locomotion task. While the neuromodulatory signals across
neurons seem to remain within a consistent activity region, the oscillatory behavior seems to play a role in
sensory processing since, when deprived of sensory stimuli (flipped on it’s back), the signals drastically
reduce any change in activity.

Frontiers 9


	Supplementary
	SLAYER Implementation
	Input Population Representation
	Action Population Representation
	Hardware
	Neuron Model Hyperparameters
	Cue-Association Training Details
	Cue-Association: Neuronal Activity
	Half-Cheetah Training Details
	High-dimensional Robotic Locomotion: Neuronal Activity


