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Supplementary Figure 1. DRTP outperforms sDFA on the MNIST dataset. Both figures are with
error bars of one standard deviation over 10 runs. The training and test errors are measured after each
epoch, while the angle is measured after each minibatch of 60 examples. Both training methods use Adam
with a fixed learning rate of 1.5×10−4. (A) A 784-1000-10 network with tanh hidden units and sigmoid
output units is trained to classify MNIST handwritten digits with the sDFA and DRTP algorithms. On
average, the error on the training set reaches 2.97% for sDFA and 2.24% for DRTP, while the error on the
test set reaches 4.33% for sDFA and 4.05% for DRTP after 100 epochs. (B) While the loss gradients δyk
estimated by both sDFA and DRTP are within 90◦ of the ones prescribed by BP, the alignment angle is
initially better for DRTP than for sDFA. The gap vanishes as the training progresses.
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A B

Supplementary Figure 2. DRTP outperforms sDFA on the CIFAR-10 dataset. Both figures are with
error bars of one standard deviation over 10 runs. The training and test errors are measured after each
epoch, while the angle is measured after each minibatch of 100 examples. Both training methods use Adam
with a fixed learning rate of 5×10−5. (A) A 3072-1000-10 network with tanh hidden units and sigmoid
output units is trained to classify CIFAR-10 images with the sDFA and DRTP algorithms. On average, the
error on the training set reaches 40.74% for sDFA and 37.39% for DRTP, while the error on the test set
reaches 53.53% for sDFA and 53.12% for DRTP after 200 epochs. No early stopping was applied. (B)
While the loss gradients δyk estimated by both sDFA and DRTP are within 90◦ of the ones prescribed by
BP, the alignment angle is approximately 3.40◦ better for DRTP than for sDFA.
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Supplementary Figure 3. Updates to the convolutional layer weights prescribed by feedback-
alignment-based algorithms are random due to a 90◦-alignment with the BP loss gradients δyk.
A convolutional network is trained on the MNIST dataset with FA, DFA and DRTP. The network topology
and training parameters are identical to those used for the trained CONV network. Error bars are one
standard deviation over 10 runs, the angle is measured after each minibatch of 60 examples. Angles have
been smoothed by an exponentially-weighted moving average filter with a momentum coefficient of 0.95.
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Supplementary Figure 4. On the MNIST dataset, DRTP leads to a distribution of the activation
values in the hidden layer that is more heavily skewed towards ±1 than BP, FA and DFA. A 784-
1000-10 network with tanh hidden units and sigmoid output units is trained to classify MNIST images
with the BP (A), FA/DFA (B) and DRTP (C) algorithms, where the FA and DFA algorithms are equivalent
for single-hidden-layer networks. The network training relies on the Adam optimizer with a binary cross-
entropy loss and a fixed learning rate of 1.5×10−4, the training and test errors are measured after each
minibatch during the first epoch and then after each epoch during the rest of the training. To estimate the
probability density function of the activations, their values are monitored for 100 different examples in
100 successive minibatches over the course of training. The estimated probability density function hints at
a different learning mechanism for DRTP: as the distribution of the activation values in the hidden layer
is more heavily skewed towards ±1, the vanishing value of the tanh activation function derivative in this
region leads the network to stop learning.
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Supplementary Figure 5. On the CIFAR-10 dataset, DRTP leads to a distribution of the activation
values in the hidden layer that is more heavily skewed towards ±1 than BP, FA and DFA. A 3072-
1000-10 network with tanh hidden units and sigmoid output units is trained to classify CIFAR-10 images
with the BP (A), FA/DFA (B) and DRTP (C) algorithms. The network training relies on the Adam optimizer
with a binary cross-entropy loss and a fixed learning rate of 5×10−6 for BP and FA/DFA, and 5×10−5

for DRTP, as per Table 3 in the main text. Other experimental conditions are similar to the ones used in
Supplementary Fig. 4. Similarly to the experiments on the MNIST dataset, the distribution of the activation
values in the hidden layer is more heavily skewed towards ±1 for DRTP, which hints at a stop learning
mechanism through the vanishing value of the tanh activation function derivative in this region.
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Supplementary Figure 6. The estimated probability density function of the activation values at the
end of training exhibits a more pronounced skewing towards ±1 for DRTP than for BP, FA and
DFA. Single-hidden-layer fully-connected networks are trained to classify images from the MNIST (A)
and CIFAR-10 (B) datasets, with the experimental conditions described in Supplementary Figs. 4 and 5.
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Supplementary Table 1. Comparison of the sDFA and DRTP training algorithms on the MNIST
dataset, illustrating that DRTP systematically outperforms sDFA. The mean and the standard deviation
of the test error over 10 trials are provided. The network definitions and conditions are identical to those of
Table 1 in the main text. The learning rates are summarized in Table 3 in the main text.

Network sDFA DRTP

FC1-500
DO 0.0 4.74±0.15% 4.61±0.13%
DO 0.1 5.10±0.13% 4.92±0.13%

DO 0.25 6.06±0.10% 5.75±0.09%

FC1-1000
DO 0.0 4.22±0.11% 4.10±0.07%
DO 0.1 4.42±0.12% 4.31±0.06%

DO 0.25 5.23±0.12% 4.94±0.06%

FC2-500
DO 0.0 4.78±0.11% 4.58±0.09%
DO 0.1 5.16±0.13% 5.00±0.07%

DO 0.25 6.13±0.10% 5.94±0.06%

FC2-1000
DO 0.0 4.24±0.09% 4.00±0.10%
DO 0.1 4.51±0.12% 4.25±0.06%

DO 0.25 5.39±0.05% 5.05±0.09%

CONV
(random)

DO 0.0 1.88±0.10% 1.82±0.11%
DO 0.1 2.17±0.13% 2.06±0.08%

DO 0.25 2.80±0.17% 2.60±0.14%

CONV
(trained)

DO 0.0 1.69±0.10% 1.48±0.15%
DO 0.1 1.83±0.11% 1.50±0.17%

DO 0.25 2.20±0.15% 1.81±0.20%
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Supplementary Table 2. Comparison of the sDFA and DRTP training algorithms on the CIFAR-10
dataset, illustrating that DRTP systematically outperforms sDFA. The mean and the standard deviation
of the test error over 10 trials are provided. The network definitions and conditions are identical to those of
Table 2 in the main text. The learning rates are summarized in Table 3 in the main text.

Network sDFA DRTP

FC1-500

DO 0.0 54.80±0.29% 53.92±0.23%
DO 0.1 54.79±0.24% 53.77±0.17%

DO 0.25 55.48±0.27% 54.26±0.16%
DA 53.83±0.32% 52.73±0.31%

FC1-1000

DO 0.0 53.73±0.33% 53.34±0.10%
DO 0.1 53.92±0.31% 53.15±0.15%

DO 0.25 54.60±0.38% 53.39±0.15%
DA 52.95±0.32% 51.87±0.32%

FC2-500

DO 0.0 54.75±0.26% 53.41±0.35%
DO 0.1 55.35±0.38% 54.06±0.46%

DO 0.25 55.81±0.37% 54.57±0.33%
DA 53.85±0.34% 52.54±0.34%

FC2-1000

DO 0.0 53.78±0.24% 52.68±0.25%
DO 0.1 53.87±0.49% 52.45±0.15%

DO 0.25 54.87±0.43% 53.29±0.31%
DA 52.59±0.20% 51.27±0.21%

CONV
(random)

DO 0.0 33.08±0.31% 32.65±0.38%
DO 0.1 33.04±0.42% 32.57±0.34%

DO 0.25 34.71±0.37% 33.90±0.53%
DA 31.52±0.25% 31.04±0.45%

CONV
(trained)

DO 0.0 38.69±0.78% 35.82±0.59%
DO 0.1 39.23±0.82% 35.17±0.91%

DO 0.25 40.08±1.03% 35.51±0.61%
DA 38.43±0.86% 34.39±0.64%
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SUPPLEMENTARY NOTE 1 DETAILED PROOF OF ALIGNMENT BETWEEN
THE BP AND DRTP MODULATORY SIGNALS

This full version of the alignment proof between the BP and DRTP modulatory signals is derived for a
neural network composed of linear hidden layers (Figure 4 in the main text) and a single training example
(x, c∗), where x is the input data sample and c∗ the label. The C-dimensional target vector y∗ corresponds
to the one-hot encoding of c∗, where C is the number of classes. Our developments build on the alignment
proof of Lillicrap et al. (2016), which demonstrates that the FA and BP modulatory signals are within 90◦

of each other in the case of a single linear hidden layer, a linear output layer and a mean squared error loss.
In the framework of classification problems, we extend this proof for the case of DRTP and to an arbitrary
number of linear hidden layers, a nonlinear output layer of sigmoid/softmax units and a binary/categorical
cross-entropy loss.

Network dynamics. The output of the k-th linear hidden layer is given by

yk = zk = Wkyk−1 for k ∈ [1, K − 1],

where K is the number of layers and y0 = x is the input vector. Note that the bias vector bk is omitted
without loss of generality. The output layer is described by

zK = WKyK−1,

yK = σ (zK) ,

where σ(·) is either the sigmoid or the softmax activation function. The loss function J(·) is either the
binary cross-entropy (BCE) loss for sigmoid output units or the categorical cross-entropy (CCE) loss for
softmax output units, computed over the C output classes:

JBCE(yK , y
∗) = − 1

C

C∑
c=1

(
y∗c log (yKc) + (1− y∗c ) log (1− yKc)

)
,

JCCE(yK , y
∗) = − 1

C

C∑
c=1

(
y∗c log (yKc)

)
.

The network is trained with stochastic gradient descent. In the output layer, the weight updates of both
BP and DRTP follow

WK,ji ← WK,ji − η
C∑
l=1

∂J

∂zKl

∂zKl

∂WK,ji

where i, j ∈ N are indices corresponding respectively to the columns and rows of the output layer weight
matrix. For both sigmoid and softmax output units, the factors in this update can be computed as

∂J

∂zKl
=

C∑
c=1

∂J

∂yKc

∂yKc

∂zKl
,

∂zKl

∂WK,ji
=

{
yK−1,i if j = l,

0 otherwise.
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For sigmoid output units, the factors in the partial derivative ∂J
∂zKl

can be computed as

∂JBCE

∂yKc
=


− 1

C

1

yKc
if c = c∗,

− 1

C

−1

(1− yKc)
otherwise,

∂yKc

∂zKl
=

{
yKc (1− yKc) if l = c,

0 otherwise,

while for softmax output units, these factors can be computed as

∂JCCE

∂yKc
=

−
1

C

1

yKc
if c = c∗,

0 otherwise,

∂yKc

∂zKl
=

{
yKc (1− yKc) if l = c,

− yKc yKl otherwise.

In both cases, it results that

∂J

∂zKl
=


− 1

C
(1− yKl) if l = c∗,

− 1

C
(−yKl) otherwise,

which is equivalent to

∂J

∂zK
= − 1

C
(y∗ − yK) = − e

C
,

where e is the error vector. Therefore, the weight updates in the output layer can be rewritten as

WK ← WK +
η

C
eyTK−1.

In the hidden layers, the weight updates follow

Wk ← Wk − ηδykyTk−1.

On the one hand, if the training relies on the BP algorithm, the modulatory signals δzk, which are
equivalent to the estimated loss gradients δyk in the linear case, correspond to the loss function gradient:

δyk = δzk =
∂J

∂yk
= − 1

C

(
K∏

i=k+1

W T
i

)
e.
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On the other hand, if the DRTP algorithm is used, the modulatory signals are projections of the one-hot-
encoded target vector y∗ through fixed random connectivity matrices Bk:

δyk = δzk = BT
k y

∗.

In order to provide learning, the modulatory signals prescribed by BP and DRTP must be within 90◦ of
each other, i.e. their dot product must be positive:

−eT
(

K∏
i=k+1

W T
i

)T

BT
k y

∗ > 0.

Lemma. In the case of zero-initialized weights, i.e. W 0
k = 0 for k ∈ [1, K], k ∈ N, and hence of

zero-initialized hidden layer outputs, i.e. y0k = 0 for k ∈ [1, K− 1] and z0K = 0, considering a DRTP-based
training performed recursively with a single element of the training set (x, c∗) and y∗ denoting the one-hot
encoding of c∗, at every discrete update step t, there are non-negative scalars styk and stWk

for k ∈ [1, K−1]

and a C-dimensional vector stWK
such that

ytk = −styk
(
BT
k y

∗
)

for k ∈ [1, K − 1]

W t
1 = −stW1

(
BT
1 y

∗
)
xT

W t
k = stWk

(
BT
k y

∗
)(

BT
k−1y

∗
)T

for k ∈ [2, K − 1]

W t
K = −stWK

(
BT
K−1y

∗
)T

.

Proof. The lemma is proven by induction.

For t = 0, the conditions required to satisfy the lemma are trivially met by choosing s0yk , s
0
Wk

= 0 for
k ∈ [1, K − 1], and s0WK

as a zero vector, given that y0k = 0 for k ∈ [1, K − 1] and W 0
k = 0 for k ∈ [1, K].

For t > 0, considering that the conditions are satisfied at a given discrete update step t, it must be shown
that they still hold at the next discrete update step t+ 1. In the hidden layers, the weights are updated using
the modulatory signals prescribed by DRTP. For the first hidden layer, we have

W t+1
1 = W t

1 − ηBT
1 y

∗xT

= −stW1

(
BT
1 y

∗
)
xT − η

(
BT
1 y

∗
)
xT

st+1
W1

= stW1
+ η = stW1

+ ∆stW1
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and for subsequent hidden layers, i.e. for k ∈ [2, K − 1], we have

W t+1
k = W t

k − ηBT
k y

∗ytTk−1

= stWk

(
BT
k y

∗
)(

BT
k−1y

∗
)T

+ ηstyk−1

(
BT
k y

∗
)(

BT
k−1y

∗
)T

st+1
Wk

= stWk
+ ηstyk−1

= stWk
+ ∆stWk

.

The weights in the output layer are updated according to the loss function gradient, thus leading to

W t+1
K = W t

K +
η

C

(
y∗ − ytK

)
ytTK−1

= W t
K −

η

C

(
y∗ − ytK

)
styK−1

(
BT
K−1y

∗
)T

= −stWK

(
BT
K−1y

∗
)T
−
ηstyK−1

C

(
y∗ − ytK

) (
BT
K−1y

∗
)T

st+1
WK

= stWK
+
ηstyK−1

C

(
y∗ − ytK

)
.

The output of the first hidden layer is

yt+1
1 = W t+1

1 x

=
(
W t

1 − ηBT
1 y

∗xT
)
x

= W t
1x︸︷︷︸
yt1

−ηxTx
(
BT
1 y

∗
)

= −sty1
(
BT
1 y

∗
)
− η ‖x‖2

(
BT
1 y

∗
)

st+1
y1 = sty1 + η ‖x‖2 = sty1 + ∆sty1

and the output of the k-th hidden layer for k ∈ [2, K − 1] is given by

yt+1
k = W t+1

k yt+1
k−1

= −st+1
Wk

(
BT
k y

∗
)(

BT
k−1y

∗
)T

st+1
yk−1

(
BT
k−1y

∗
)

= −
(
stWk

+ ηstyk−1

)(
styk−1

+ ∆styk−1

)∥∥∥BT
k−1y

∗
∥∥∥2 (BT

k y
∗
)

= − stWk
styk−1

∥∥∥BT
k−1y

∗
∥∥∥2︸ ︷︷ ︸

styk

(
BT
k y

∗
)
−
(
stWk

∆styk−1
+ ηstyk−1

(
styk−1

+ ∆styk−1

))∥∥∥BT
k−1y

∗
∥∥∥2 (BT

k y
∗
)

st+1
yk

= styk +
(
stWk

∆styk−1
+ ηstyk−1

(
styk−1

+ ∆styk−1

))∥∥∥BT
k−1y

∗
∥∥∥2 = styk + ∆styk .
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The coefficients stW1
and sty1 are updated with strictly positive quantities ∆stW1

and ∆sty1 at each update
step t and are thus strictly positive for t > 0. Furthermore, the coefficients stWk

and styk are updated based
on the coefficients of the previous layer and will therefore be strictly positive for k ∈ [1, K − 1].

Theorem. Under the same conditions as in the lemma and for the linear-hidden-layer network dynamics
described above, the k-th layer modulatory signals prescribed by DRTP are always a negative scalar
multiple of the Moore-Penrose pseudo-inverse of the product of forward matrices of layers k + 1 to K,
located in the feedback pathway between the output layer and the k-th hidden layer, multiplied by the error.
That is, for k ∈ [1, K − 1] and t > 0,

− 1

stk

(
k+1∏
i=K

W t
i

)+

e = BT
k y

∗ with stk > 0.

Proof. When replacing the forward weights W t
i by the expressions given in the lemma, the above equality

becomes [(
k+1∏

i=K−1

stWi

)
stWK

(
k+1∏

i=K−1

∥∥∥BT
i y

∗
∥∥∥2)(BT

k y
∗
)T]+ (

y∗ − ytK
)

= stkB
T
k y

∗

(
K−1∏
i=k+1

stWi

)−1( K−1∏
i=k+1

∥∥∥BT
i y

∗
∥∥∥2)−1 [

stWK

(
BT
k y

∗
)T]+ (

y∗ − ytK
)

= stkB
T
k y

∗

(
K−1∏
i=k+1

stWi

)−1( K−1∏
i=k+1

∥∥∥BT
i y

∗
∥∥∥2)−1 (

BT
k y

∗
)T+

st+WK

(
y∗ − ytK

)
= stkB

T
k y

∗

(
K−1∏
i=k+1

stWi

)−1( K−1∏
i=k+1

∥∥∥BT
i y

∗
∥∥∥2)−1 ∥∥∥BT

k y
∗
∥∥∥−2 (

BT
k y

∗
)

︸ ︷︷ ︸
(BT

k y∗)
T+

∥∥stWK

∥∥−2
stTWK︸ ︷︷ ︸

st+WK

(
y∗ − ytK

)
= stkB

T
k y

∗

(
K−1∏
i=k+1

stWi

)−1(K−1∏
i=k

∥∥∥BT
i y

∗
∥∥∥2)−1 ∥∥stWK

∥∥−2
stTWK

(
y∗ − ytK

) (
BT
k y

∗
)

= stk

(
BT
k y

∗
)
.

By identification, it is found that

stk =
stTWK

(
y∗ − ytK

)(∏K−1
i=k+1 s

t
Wi

)(∏K−1
i=k

∥∥BT
i y

∗
∥∥2)∥∥∥stWK

∥∥∥2 .

From the lemma proof, the update formula for the vector stWK
is given by

st+1
WK

= stWK
+
ηstyK−1

C

(
y∗ − ytK

)
,
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where η, C and styK−1
are positive scalars. In the framework of classification problems where outputs are

strictly bounded between 0 and 1, for any example (x,c∗) in the training set, the error vector e =
(
y∗ − ytK

)
has a single strictly positive entry (1− yKc) at the class label index c = c∗, all the other entries −yKc with
c 6= c∗ being strictly negative. This sign information is constant as the network is trained with a single
training example. Given that s0WK

= 0 from zero-weight initialization and that stWK
is updated in the same

direction as e, we have at every discrete update step t

sign
(
stWK

)
= sign

(
y∗ − ytK

)
,

and thus
stTWK

(
y∗ − ytK

)
> 0.

Therefore, the scalars stk are strictly positive for t > 0.

Alignment. In the framework of classification problems, as the coefficients stk are strictly positive
scalars for t > 0, it results from the theorem that the dot product between the BP and DRTP modulatory
signals is strictly positive, i.e.

−eT
(

K∏
i=k+1

W T
i

)T (
BT
k y

∗
)
> 0

eT

(
K∏

i=k+1

W T
i

)T (k+1∏
i=K

Wi

)+

︸ ︷︷ ︸
I

e

stk
> 0

eT e

stk
> 0.

The BP and DRTP modulatory signals are thus within 90◦ of each other.
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