
   

SUPPLEMENTAL EXPERIMENTAL PROCEDURES 

 

Primer List. 

List of oligonucleotides used in this study. 

Description Forward Primer Reverse Primer Ref 

Esrrb endo ACCCAGTTCTCAGTGGATGC AGGAGAAACAGCAGGCAAAA  

Esrrb exo TCTGGACTCGCCGCCTATGTT GCGTTAAGCATGTACTCGCATTTGAT  

Intergenic_Chr8 AAGGGGCCTCTGCTTAAAAA AGAGCTCCATGGCAGGTAGA Boyer et al. 2006. 

Intergenic_Chr6 CCCCTTTCTGAAGCACTCTG TAAGGCGTCATTTCCCAAAG Boyer et al. 2006. 

pSox2 CCTAGGAAAAGGCTGGGAAC GTGGTGTGCCATTGTTTCTG Boyer et al. 2006. 

pPou5f1 TGGGCTGAAATACTGGGTTC TTGAATGTTCGTGTGCCAAT Boyer et al. 2006. 

pNanog TTGGGACCAGCTAGAGCAAT CCAGGCTTGTCTACCACCAT Boyer et al. 2006. 

pSox17 TGTCCTTTAACAGGCCTTGG GCAGCGGTATCACACTCAAA Boyer et al. 2006. 

pOlig1 CCATCTGTTGCAAAATCGTG CTCGAGCTCTATTGCCATCC Boyer et al. 2006. 

pOlig2 GCCTGACGCTACAGTGACAA GGCTAATTCCGCTCAATGAA Boyer et al. 2006. 

pOlig3 CTGAATGATGATGGCACGTC CTGTTTCCTGCACTGCACAT Boyer et al. 2006. 

pZfp42Fwd (–283 to –117) TGCATCCTCTGCTTGTGTAA CAGAGCTGTCCCCTTGTCT van der Berg.D 2008 

pRest Fwd (–3216 to –3071) CTCCCCTGGACAATAGCTTC CGTCCTTCATTTCCTCAGTG van der Berg.D 2008 

pDppa3 Fwd (–1770 to –1550) GATCCAGCTGGTCTGAGCTA GTGCAGGGATCATAGGAGTG van der Berg.D 2008 

pLefty1 Fwd (–1264 to –1060) AAGCTGCAGACTTCATTCCA CGGGGGATAGATGAAGAAAC van der Berg.D 2008 

pAmilase CTCCTTGTACGGGTTGGT AATGATGTGCACAGCTGAA van der Berg.D 2008 

Rnf125 TGACATGAGGGCGCACATAAG TGGTGTCGCCAAGTTCTAGC  
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Real-time quantitative PCR 

Cells were trypsinized and collected at specific time points. Total RNA was extracted using Trizol 

Reagent (Invitrogen), column-purified with RNeasy kit (Qiagen) and treated with RNase-free DNase 

(Qiagen). Total RNA (1 μg) was reverse transcribed using a high-capacity reverse transcription kit 

(Applied Biosystems). All quantitative PCR analyses were performed using the Fast SYBR Green 

Master Mix (Applied Biosystems) following the manufacturer’s protocols on the Light Cycler 480 

Real-Time PCR System (Roche). All measurements were performed in technical triplicates.  

Antibodies 

The following commercially available antibodies were used at the indicated concentrations for western 

blot: α–β-actin (Sigma, catalogue number A5441, clone AC-15, RRID: AB_476744 1:1,000), Esrrb 

(R&D Systems, PP-H6707, RRID: AB_1961870, 1:1000), H3 (Abcam, ab1791, RRID: AB_302613, 

1:1000), H3K4me3 (Abcam, ab8580, RRID: AB_306649, 1:1000), H3K27me3 (Upstate, 07-449, 

RRID: AB_310624, 1:1000), GFP (Cell Signaling, 2555, RRID: AB_10692764 

Zscan10 GCGGAACCAGTCCCTGATG CGTGGCCCCATATCTTCCTG  

Dppa2 TCAACGAGAACCAATCTGAGGA GCGTAGCGTAGTCTGTGTTTG  

Krr1 CTCAGCCGCAGAAACAGAAG ATTTCGGGAACAAGGTTGCGA  

Esrrb CTAGTTGCGGCTCCTTCATC TGGCGTTAAGCATGTACTCG  

Nanog CCAGTCCCAAACAAAAGCTC ATCTGCTGGAGGCTGAGGTA  

Pou5f1 GGATGGCATACTGTGGACCT GTTGGTTCCACCTTCTCCAA  

Sox2 CACAACTCGGAGATCAGCAA CTCCGGGAAGCGTGTACTTA  

Fgfr2 CACCGAGAAGATGGAGAAGC GCGATGCTCCTGCTTAAACT  

Gli2 GCCCTGGAGAGTCACCCTT TGCACAGACCGGAGGTAGT  

Mllt6 ATGAAGGAGATGGTAGGAGGC CCTGGACGATGCCATAGCAA  

Nefl CCGTACTTTTCGACCTCCTACA CTTGTGTGCGGATAGACTTGAG  

Trim25 ATGGCTCAGGTAACAAGGGAG GGGAGCAACAGGGGTTTTCTT  

Spred2 GAAGAAACACACCCGGACGAT CTCCTTCCTGTGGGAACCAT  

Sumo3 GGCTCGGTGGTACAGTTCAAG CCGGAATCGAATCTGCCTCAT  
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 1:1000), α-Tubulin (Sigma, T5168, RRID: AB_477579, 1:1000), Calnexin (Sigma, C4731, RRID: 

AB_476845, 1:1000), Dnmt3a (Abgent, AP1034a, RRID: AB_352513, 1:500), Mov10 (Protein Tech 

Group, 10370-1-AP, RRID: AB_2297897, 1:1000), Klf5 (Abcam, ab24331, RRID: AB_775925, 

1:1000), CREB1(Santa Cruz, sc-58, RRID: AB_631314, 1:500). 

 

Microarray data analysis 

Significant genes for each time series were found using one-way analysis of variance with a 

Bonferroni-corrected P value of 0.05 and a total fold change greater than 2. All subsequent clustering 

and dimensionality reduction analyses were performed in R and Matlab, using the Bioinformatics and 

Statistics Toolboxes. Data were row standardized to avoid bias towards highly expressed genes and 

hierarchical clustering was performed on standard scores. Hierarchical clustering was performed using 

the Euclidean distance metric and the average linkage function. 

 

Processing the proteomic data 

We used ProQUANT and ProGROUP software (Applied Biosystems) to analyze the mass 

spectrometric data, giving confidence values for the relative quantification analysis. Further proteomic 

analyses included only proteins that were identified with more than 95% confidence and where the 

error factor of the measurement was less than 2. From the 1790 detected proteins, the analysis 

considered only that mapped to our non-redundant mRNA data set (Table S1). 

 

Chromatin Immunoprecipitation 

Chromatin Immunoprecipitations (ChIP) were performed as described (Boyer et al., 2005). Images 

acquired from the Solexa sequencer were processed through the bundled Solexa image extraction 

pipeline and aligned to the Mouse July 2007 assembly (NCBI37/mm9) using ELAND software. 

Complete sequence data are available at the NCBI GEO (Gene Expression Omnibus) database (Edgar 

et al., 2002; Barrett et al., 2011) under the accession designation number: GSE31842. Only uniquely 

mapped coordinates were used for further analyses. Uniquely aligned 36 bp sequences were extended 

to 250 bp in the 3’ direction and allocated into 20 bp bins. We used a previously published algorithm 

(Zhang et al., 2008), Model-based Analysis of ChIP-Seq (MACS), for peak-finding.  

Binding regions were identified based on: (1) 250 bp bandwidth, (2) >10-fold and <30–fold change 

between total tag counts from each ChIP library vs. the negative/input ChIP library and (3) a p-value 

threshold of 10-5. Esrrb bound genomic DNA was enriched from whole cell lysates using anti-Esrrb 

antibody (R&D; PP-H6707-00, Clone H6707, Lot# A-1, RRID: AB_1961870) and compared to the 

starting whole cell extracts. H3K4me3 and H3K27me3 modified nucleosomes were enriched from 

whole cell lysates at the day 0, 1, 3 and 5 time points using an epitope-specific rabbit polyclonal 

antibody for H3K4me3 (Abcam; ab8580, Lot #1016899, RRID: AB_306649) and H3K27me3 

(Upstate: 07-449; Lot# DAM1387952, RRID: AB_310624 )(Santos-Rosa et al., 2002; Guenther et al., 

2007) and compared to the starting whole cell extract corresponding to the each specific day.  
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Array-based methylation analysis using HELP 

The HELP assay was performed as previously described (Khulan et al., 2006) with the following 

modifications. One microgram of high molecular weight DNA was digested overnight with HpaII or 

MspI (NEB, Ipswich, MA). DNA fragments were purified using phenol/chloroform, resuspended in 

10 mM Tris-HCl pH 8.0, and ligated in an overnight reaction using the HpaII aptamer and T4 DNA 

ligase. Ligation-mediated PCR was performed as previously described (Khulan et al., 2006) and 

products were labelled and hybridized onto a Roche NimbleGen, Inc Arrays (Madison, WI) custom 

array designed by Dr. Ari Melnick’s laboratory (Weill Cornell medical College, NY). 

 

Array-based methylation using HELP data analysis 

Data pre-processing and quality control was performed as previously described (Khulan et al., 2006) 

using R software 2.9.0 (2008) and BioConductor (Gentleman et al., 2004). Intra-array normalization 

was followed by the determination of background noise for each channel (2.5 median absolute 

deviations from the median of the random probes log2 signal for that channel). Each channel was 

centered by subtracting this noise threshold from its log2-transformed signal intensities.The 

HpaII/MspI (unmethylated/reference) ratio was then determined for each probe set on the array.  

The position of the centre of each probe on the array was compared with the transcription start site 

(TSS) of known Refseq retrieved from UCSC mouse genome annotations Mouse July 2007 

(NCBI37/mm9) assembly. Differentially methylated probe sets between the day 0 and days 1, 3 and 5 

were determined by the one-way ANOVA test (Ayroles and Gibson, 2006). The significance threshold 

was set to ANOVA p-value<0.05, and concurrently FDR was determined using the Benjamini and 

Hochberg method (Benjamini and Hochberg, 1995). In addition, our threshold for differential 

methylation for each gene between the means of day 0 and days 1, 3 and 5 was greater than 20% (i.e. 

ratio of the mean methylation in the two groups [Δ log (HpaII/MspI)] >= 1.5). Table S4 contains the 

complete lists of differentially methylated genes for Esrrb and Nanog knockdown time series within 

1Kb from the TSS. 

 

Data integration analysis of all the regulatory layers 

Merging different regulatory layers: Datasets for the six regulatory layers (mRNA transcriptome, 

DNA methylome, nuclear proteome, (histone H3 trimethylated at lysine 4 (H3K4me3), histone H3 

trimethyl Lys27 (H3K27me3), and Esrrb localization) were merged by matching each data type to 

34,662 non-redundant gene names, available at the MGI (Blake et al., 2011) open web resource: 

 (ftp://ftp.informatics.jax.org/pub/reports/MRK_Synonym.rpt). Genes, dismissed (reassigned) in the 

most recent annotation of Mouse July 2007 (NCBI37/mm9) assembly and gene name synonyms as 

well as RefSeq (Pruitt et al., 2000) were taken into account, in order to minimize losses at the dataset 

integration stage. Using this procedure, it was possible to match 95%-99% of data points for each 

regulatory layer. Merging has been done after analysis of variance ANOVA (Ayroles and Gibson, 

2006) to score the significance of the correction (as described in detail see below). 

ftp://ftp.informatics.jax.org/pub/reports/MRK_Synonym.rpt
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Normalization of time series data from the multiple layers: Time-series data for all layers were 

normalized to day 0 using Z-score normalization: 

i
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In this formula, σ is the standard deviation in the time series (row) i and xi,0 is the value for the day 

(column) 0. The main advantage of this procedure is that it produces the same (comparable) range of 

values for each profile in each regulatory layer. Normalization was done after the layers were merged 

together. 

Processing the mRNA transcriptome expression and DNA methylome layers: Time-series of gene 

expression data and DNA methylation data, obtained from the Esrrb knockdown time-course, were 

first subjected to standard ANOVA test (Ayroles and Gibson, 2006). The ANOVA evaluates the 

consistency of expression values for each probe from one biological replica to another. In order to 

correct for multiple hypothesis testing, false discovery rates (FDR) (Benjamini and Hochberg, 1995) 

were computed based on the ANOVA p-values as follows: 
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P in eq.2 is the ANOVA p-value, Padj is the adjusted p-value for multiple hypothesis testing, N is the 

total number of samples (number of probes in the microarray) and k is the rank of the ith probe, with 

respect to the ANOVA p-values (lowest ANOVA p-value is the 1st rank, highest ANOVA p-value is 

the Nth rank). In general, the FDR test is “softer” than the more common Bonferroni correction (Sture 

Holm, 1979). 

Analysis of multiple regulatory layers suffers from missing data; therefore, the threshold for filtering 

of expression and methylome data (1Kb from TSS only) was set to a relatively low level to include of 

as many data points as possible. For the methylome we set the threshold at 15% of FDR (15% of false 

positive can be tolerated). After filtering the data based on this FDR (before merging with other layers), 

genes with multiple profiles (ie. probes from the array with different methylation states in the CpG 

islands corresponding to the same gene) were assigned a single profile, choosing the probe with the 

best p-value. The described procedure produced 11,324 significantly changing genes for the expression 

data and 4495 significantly changed genes from the methylome data. 

Processing the proteome layer: The proteome layer measured nuclear protein levels because cell fate 

determination is largely controlled in the nucleus. Therefore, the proteome dataset only measured a 

small subset of gene-products as compared with the other layers. Nonetheless, we identified 1790 

proteins after merging IDs with MGI, as described above (Table S1).  

Processing the Esrrb ChIP-seq and histone modification layers: MACS model-based analysis for 

ChIP-seq scores for the H3K4me3, H3K27me3 and Esrrb datasets were selected for 2Kb upstream 

regions only; redundant profiles for each gene were filtered and single profiles (or data points for Chip-

seq data), giving the best MACS score were retained. Consequently, the data were merged relative to 

the non-redundant set of 34,662 genes from MGI (see above). Based on cross-layer comparisons (ChIP-
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seq versus expression), it was determined that 600 Esrrb target genes are statistically differentially 

expressed based on the ANOVA (Ayroles and Gibson, 2006) with the p-value 0.078 and FDR 15%.  

Chromatin modification regulatory layers (H3K4me3 and H3K27me3 marks) were also filtered for 

redundant profiles; 2Kb from the TSS was selected for the analyses and the datasets were normalized 

as described above.  

 

Meta-clustering multidimensional time-series and data visualization using Cytoscape 

1563 genes and gene-products with changes in any three or more out of the six regulatory layers 

analyzed were selected for meta-clustering. Co-expression distance matrix has been constructed based 

on probabilities calculated for the corresponding pairwise correlation values r given the number of 

available for the comparison data points N: 

),( Nrpd BABA             (3) 

If the data for a given dimension was missing, the N takes this into account, thus making all data 

comparable even in the absence of detected changes in any given dimension for any given pair of 

genes. On the example below, comparison between the genes A and B is only available for two 

dimensions, mRNA and H3K4, but not for the protein dimension. In this case, the correlation is 

calculated only for 8 data points (N=8) marked in red.   

 

 mRNA protein H3K4 ... 

 Day0 Day1 Day3 Day5 Day0 Day1 Day3 Day5 Day0 Day1 Day3 Day5 ... 

Gene A data data data data NA NA NA NA data data data data ... 

Gene B data data data data Data data data data data data data data ... 

 

Network layout and visualization was done using the publicly available Cytoscape (Otasek et al., 

2019). http://www.cytoscape.org/. The two-dimension clustering was constructed in the form of co-

expression gene networks using a force-directed Cytoscape layout. First, a Pearson similarity matrix 

was generated for the 1563 genes using all six regulatory layers for every gene. Second, a similarity 

cut-off value was established in order to identify the most significant correlations between the genes. 

The cut-off value was selected based on the connectivity of the resulting co-expression gene networks: 

high cut-off values produced many unconnected networks with low numbers of edges and low cut-off 

values produced high connectivity networks containing very large numbers of network edges. In this 

study the lowest possible similarity cut-off value was found, where all major network parts are 

connected. Both highly negative and highly positive correlations were considered (r < -0.8; r > 0.8). 

Based on this cut-off definition, the co-expression gene network in *.gml format (graph mark-up 

language) was constructed and imported into Cytoscape. Force-directed Cytoscape layout repeatedly 

produced the same topology even with slight variations in layout parameters. Table S1 contains all the 

data integrated and normalized for all the regulatory layers analyzed.  

http://www.cytoscape.org/
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The role of Esrrb in the transcriptional hierarchy of pluripotency gene network. Integration of 

in vivo binding (ChIP) data and expression data 

In order to establish the position of Esrrb in the transcriptional hierarchy we collected and integrated 

two types of data for the three core pluripotency factors (Oct4, Nanog, Sox2) and Esrrb. The data 

included (i) the results of knockdown or knockout expression microarray studies from two to three 

independent sources and (ii) the results of in vivo chromatin immunoprecipitation studies from up to 

three independent sources. 

Three knockdown expression datasets were found and taken into consideration for Esrrb (Ivanova et 

al., 2006; Feng et al., 2009) (plus one Esrrb dataset produced in this study), Nanog (Ivanova et al., 

2006; Loh et al., 2006; Macarthur et al., 2012) Oct4 (Ivanova et al., 2006; Loh et al., 2006) and Sox2 

(Ivanova et al., 2006). Consequently, all analyzed expression data sets were processed in a similar way: 

raw data was converted to log-space. Significance of gene expression changes at the Day 1 versus Day 

0 has been found from 2-tailed, 2-sample equal variance Student's t-test. Such analysis reveals genes 

quickly responding to concentration changes of the upstream regulator; so, the pool of the identified 

genes should contain many of the direct targets for the analyzed transcriptional regulator. 

Direction of the immediate gene expression changes (sign, upregulation or downregulation) has been 

monitored in order to find whether the upstream regulator plays role as an activator or as a repressor 

for the downstream genes. Genes producing conflicting results with respect to different datasets were 

removed from consideration. 

A score Se reflecting the level of confidence has been assigned to each gene based on the number of 

knockdown expression studies supporting the gene's immediate response. If no significant changes 

were observed in two out of the three studies, we assigned Se = 0, for two supporting studies we 

assigned Se = 1 and if supported by all three studies Se = 2. Many transcription factors produced the 

highest expression score (Se = 2): Oct4 - 51 genes, Nanog - 14 genes, Esrrb - 18. Only 2 suitable 

datasets were found for Sox2, correspondingly the highest score in the case of Sox2 was Se = 1 (55 

transcription factors). 

ChIP data has been collected for each of the considered four pluripotency factors (Oct4, Nanog, Sox2, 

Esrrb)(Chen et al., 2005; Kim et al., 2008; Marson et al., 2008), including ChIP data for Esrrb produced 

in the current study. In the case of Oct4, Nanog and Sox2 ChIP data we compared 3 datasets and 

assigned a binding score Sb = 1 to genes, reported as targets in two or three out of the three considered 

datasets and Sb = 0 to all other genes. 

Based on the described above expression (Se) and the chip (Sb) scores, a combined evidence score S 

was calculated based on the following rule: 

  

S = Se+Sb for  Se > 0         (4) 

S = 0 for  Se = 0 
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Table S5 shows the corresponding scores for all four considered core pluripotency factors. A signed 

and directed gene network, combining data from Table S5 is shown in Figure 5. According to the rank 

analysis shown in the Table S5, Sox2 and Nanog occupy ranks #12 and #23 among transcription 

factors, Esrrb targets. Given 1578 mouse transcription factors considered in total, this translates to 

0.8% and 1.5% top percentile or q=0.0076 and q=0.0146 correspondingly. Even more strikingly, Esrrb 

occupies the rank #2 among the Nanog targets (#3 is Sall4) and the same rank #2 among the Sox2 

targets (rank #1 is Klf4). Among the Oct4 targets Esrrb occupies rank #25, higher than Sox2 (#64) and 

Nanog (#108). 

The above analysis suggests that Esrrb is tightly linked to the other core pluripotency factors and it 

occupies the central position in the transcriptional hierarchy.  

 

DATA AVAILABILITY STATEMENT 

All microarray data and ChIP-seq data are deposited at the Gene Expression Omnibus (GEO) database 

repository under accession number GSE-31842.  

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE31842. This link gives access to all data 

sets uploaded in this database repository organized in four different subseries GSE31640, GSE31791 

and GSE33191. 
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SUPPLEMENTARY FIGURE LEGENDS 

Figure S1. Esrrb rescue clone and experimental time course controls for different regulatory layers. In 

relation to Figure 1. 

(A) Esrrb expression levels after Dox withdrawal. Endogenous levels of Esrrb mRNA are undetectable 

due to the constitutive shRNA (see Fig. 1A). Quantitative PCR data confirm expression of the 

exogenous form in presence of Dox (mean ± SD for 3 replicates (n=3)). Lower panel, Western blot 

confirms downregulation of Esrrb and GFP in the absence of Dox. (B) qPCR analysis of early lineage 

differentiation markers. (C) Differentiation of mESCs shown by gradual changes in morphology and 

loss of alkaline phosphatase (AP) activity in cells maintained for 5 days without Dox. In presence of 

Dox cells maintain an undifferentiated phenotype. (D) Flow cytometry analyses of SSEA1 cell surface 

marker levels upon depletion of Esrrb. (E) Specificity of the anti-Esrrb antibody used for ChIP. 

Enrichment of Esrrb-bound chromatin was confirmed by Western blots using IgG as a non-specific 

control. The arrow indicates Esrrb. (F) Distribution of Esrrb ChIP-seq tags relative to the TSS. Tag 

counts were normalized to the total number of tags in each sequencing reaction. (G) Subcellular 

localization controls for iTRAQ samples. Equal amounts of total protein from cytosolic and nuclear 

fractions were analyzed by Western blots using anti-Tubulin (cytosolic marker), anti-Calnexin 

(endoplasmic reticulum marker) and anti-histone-H3 (nuclear marker). Western blot confirmation of 

Esrrb depletion and nuclear localization over the depletion time-course. (H) Hierarchical clustering of 

the significant log2 fold protein level changes during the time-course. (I) Protein levels measured by 

iTRAQ correlate with Western blot results for Dnmt3a, Mov10, Klf5 and Creb1.  

 

Figure S2.Visualization of dynamic changes across the analysed data dimensions. In relation to Fig. 

2. 

The dynamic changes are shown by colours in the context of the clusters shown in the Fig. 2. The 

colour scale changes from red (maximal expression) to green (absence of expression), see also the 
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colour bar in the left top corner. (Panels A-D) Changes in the mRNA levels, (E-H) Changes in the 

protein levels, (I-L) Changes in the promoter methylation, (M-P) Changes in the level of H3K4me3 

methylation, (Q-T) Changes in the level of H3K27me3 methylation. The dynamics has been also 

represented in Movie S1. 

 

Figure S3. Standard deviations in promoter methylation data. DNA methylome dynamics after Esrrb 

or Nanog depletion. In relation to Fig. 2. 

(A) The figure shows errors in measurement of promoter methylation for genes shown in the Fig. 2J. 

The errors were calculated based on biological replicas and are represented as standard deviations 

interpolated to the entire time course of differentiation. (B) Hierarchical clustering of the set of genes 

with significant changes in promoter methylation after depletion of Esrrb or Nanog. GO categories 

based on Enrichr (Kuleshov et al., 2016) are depicted for the groups of genes whose methylation 

profiles follow the same trend or an opposite trend in the Esrrb versus Nanog time course. 

 

 

Figure S4.  Co-expression clustering of mRNA and protein time series data.  

(A) The figure shows co-expression clustering of data containing genes significantly changing their 

mRNA and their protein levels. Cluster #1 shows genes upregulated upon Esrrb removal in both 

analysed dimensions. This cluster contains many differentiation markers, such as Gata6. Cluster #5 

shows genes downregulated upon Esrrb, this cluster contains most pluripotency genes (labelled in red). 

Cluster #4 contains genes, where protein expression is delayed relatively to mRNA expression, 

Clusters #3 and #2 contain genes, where various significant discordances between the mRNA and the 

protein levels are observed. The dynamics has been also represented in Movie S2. 

 

 

 

 

 


