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What the supplement is about

In this supplement we collect a number of explanations and/or elaborations on technical
issues, as well as some illustrative material that could not find a place in the main article.

Most figures in this supplement are actually referenced in the article. It is expected that
the reader of the supplement is familiar with the material discussed in the article.

Anyone intending to use the methods discussed in the main article will benefit from
consulting the supplement in addition.

Most of the material discussed here will not be found neither in current textbooks, nor
in the current English literature. Some of the material is based on pre–WW–II literature
of continental Europe (including Russia). The language was mainly German, but also
a variety of other languages. Most of it was never translated. The few works that were
translated tend to attract the interest of historians of science, rather than active researchers
in the field of color.

Some of this corpus dealt with the rigorous, formal structure of colorimetry. An example
is Erwin Schrödinger’s fundamental work,1 which has actually made it into the better
modern textbooks. Most of the heritage had to remain largely on the level of intuitions
or heuristics, although some was exploited in actual applications. The key example is
Wilhelm Ostwald,2 which is the more remarkable because Ostwald conceived of, and
backed up his ideas with observations involving actual optics instead of mere virtual
reality. There was no computer graphics or image processing at the time.

The use of computers enables one to really exploit such heuristics and integrate them
in the formal framework of colorimetry. This yields an account of colorimetry that goes
beyond the contemporary conventions.

1 See:
E.Schrödinger (1920). Theorie der Pigmente von größter Leuchtkraft. Annalen der Physik 4(62), 603–622.
and
E.Schrödinger (1925). Über das Verhältnis der Vierfarben– zur Dreifarbentheorie. Sitzungsberichte der Akademie der Wissenschaften
in Wien. Mathematisch-naturwissenschaftliche Klasse, Abteilung 2a. 134, 471–490.
2 See
W. Ostwald (1919). Einführung in die Farbenlehre. Unesma, Leipzig;
W.Ostwald (1917a). Die Farbenfibel. Unesma, Leipzig.
and
W.Ostwald (1917b). Der Farbatlas. Unesma, Leipzig.
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1 DISPLAY

Eventually almost any colored image will end up as RGB. One might prefer CIE XYZ,
CIE Lab, HSB, or whatnot, but when the rubber hits the road the display hardware will be
driven by RGB signals.3

As argued in the article, RGB is not only a de facto final format for display. It is actually
a colorimetric (geometrical) description of colors that is closely related to spectral
reflectance factors of materials under more or less “standard” lighting conditions. This
renders RGB the preferred description for object colors.4 It was the natural choice for the
founders of colorimetry, Maxwell and Helmholtz, in the nineteenth century and for very
good reasons. As we argue in the article, it lets one deal with physical material properties
and radiant sources of illumination, as well as with various effects of metamerism in a
principled manner.

However, the display stage is of conceptual and practical interest as a topic by itself.
The article is not primarily about that, but here we discuss a few aspects that are related
to the topics treated in the article.

1.1 Standard presentation of object colors

An effective way to present object colors is shown in fig. S1. Of course, these are only
“object colors in virtual reality,” because presented on an electronic display, luminous
surfaces instead of illuminated surfaces. That is a fundamental difference.

Thus you cannot present a uniform patch that looks “golden.” However, you can
effectively present browns, olives and grays, whereas these have no existence as luminous
(or “beam”) colors. That this is possible is due to the embedding in a minimum context.

Apart from providing a context, one also needs to avoid possible effects of simultaneous
contrast, assimilation, and so forth. The example shown here should prove generally
useful.

The overall background is gray on the average, like the immediate surround. White and
black patches anchor the scale.5 The fiducial color is seen in isolation (due to the average

3 For printing that might be CMYK, but that is not a fundamental difference.
4 Do not confuse this with the CIE RGB 1931 color space, there is no relation. Wright and Guild did colorimetry in the 1920’s, using
three monochromatic primaries at standardized wavelengths of 700nm (red), 546.1nm (green) and 435.8nm (blue). They were not
interested in object colors, the CIE RGB space has the same ontological roots as the CIE XYZ space.
5 A.Gilchrist (1999). Lihtness Perception. In: R.A. Wilson and F.C.Keil, (Eds), MIT Enclyclopedia of Cognitive Science. Cambridge:
MIT press, pp 471–472.
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gray annulus), is properly anchored and is hardly effected by simultaneous contrast.6

Adaptation still occurs,7 so one should not stop to scan the eyes over the pattern.

Figure S1. An effective way to present “object colors.” In this case the color that is
presented is an orange. It is presented in the central disk. The remainder of the display
serves to present context and suitable anchoring of the scale. In viewing the patch one
should avoid fixation of the central disk, but move the eyes over the image in a natural
manner.

6 W. von Bezold (1874). Die Farbenlehre in Hinblick auf Kunst und Kunstgewerbe. Vieweg, Braunschweig.
7 K.Hirakawa and T.W.Parks (2005), Chromatic adaptation and white-balance problem. Conference Paper in: Proceedings / ICIP
International Conference on Image Processing 3:III – 984-7 – October 2005, 4 pages.
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This patch appears like a ]tint (it contains some ]white) of ]orange to us. With some
experience one might estimate RGB[99|60|20]. Mismatches occur if there are differences
of the order of 05 (the range is 00–99) in the usual RGB display coordinates. Because of
the anchoring the illuminant (in print) or display calibration (on a screen) are not all that
crucial.

1.2 Display colors

Colors may be displayed in many ways. Think of paint, print, silverhalite photography,
electronic displays, . . . . Technologies come, technologies go.

Physical display uniquely communicates color. Science, concepts and language are all
important, but are equally unable to communicate color. Color as quale is an emphatic,
not conceptual, mental strand of Homo.

Technology constrains formal description. In a phosphors based display (old-fashioned
TV-set) one moves towards the center of the color solid by attenuation and adding white
(one gets black for free). In contradistinction, in printing with transparent inks one adds
black (one gets white for free). In human perception black and white play equivalent,
mutually complementary roles.

In a display based on three basic colors that can be combined additively, the
RGB tripartition discussed in the article yields the unique optimum choice for the
primaries (fig. S7). The display ostensively defines ]colors by way of the contraction
map ⇓.

Formal object color colorimetry yields RGB coordinates. Most are in the range 0. . . 1,
thus can be displayed without further ado.

The rare under– and over–shoots are (typically much) less than 20% (rarely
exceeding 1%). In typical databases a few colors (say a few percent) may over or
undershoot, typically by less than a few percent.

The common “solution” is clipping. More accurate is to project on I3rgb from the center
of the color solid. It is unlikely that the difference would be spotted.

1.3 Calibration issues

Display units are supposed to be linearized and radiometrically calibrated. Most at
least approximately are. Over and above this, one uses (nonlinear) “gamma correction”
to accommodate human vision, encapsulated in hard and software. The user specifies
color coordinates, say RGB[99|66|20] (programmers will prefer hexadecimal notation of
triple-byte values #FF AA 33 and expect a certain variety of ]orange ( ) on the screen).

4



Supplementary Material

Effects of the gamma correction may be confusing, depending on the soft– and
hard–ware environment. For instance, the center of the color solid has coordinates
RGB[50|50|50], which looks a ]light gray. An apparent ]middle gray will have an
albedo of about 20% (not 50%). Yet when we use “RGBColor[0.5,0.5,0.5]” (fairly
generic type of command) in Mathematica c© we get a nice ]middle gray on the screen.
Setting the gamma to 1 (linear display) counteracts that.

Unknown software (especially when “under the hood”) should be checked for effects. In
many cases eye measure will solve a problem, otherwise one turns to spectroradiometry.

The colors in this paper were obtained by feeding the colorimetric coordinates in
standard “RGBColor[*,*,*]” commands in Mathematica on a MacBook Pro (Retina,
15–inch, Mid 2015) platform using factory settings. Radiometric monitoring shows this
to be acceptable. Unfortunately, we have no control on what happens at the publisher, or
on a reader’s display.8

1.4 Transformations between color spaces

All simple (just colorimetry, no arbitrary conventions) color spaces are equivalent
although some are far more natural and intuitive than others. It is a trivial matter to
transform between them. Setting up the transformation is only a matter of expressing the
primaries of one system in that of the other.

For instance, in order to transform between CRGB and Cxyz and vice versa, one may
use (T XYZ

RGB from RGB to XYZ, T RGB
XYZ the other way):

T XYZ
RGB =

(
0.23490 0.27642 0.89303
0.09477 0.76505 0.54501
1.29465 0.11032 0.00005

)
, T RGB

XYZ =
( 0.05654 −0.09269 0.50113
−0.66394 1.08791 0.04083
0.92221 −0.31236 −0.14445

)
(S1)

(For the case of object colors any constant factors will cancel out if the computations
include automatic white balance.) It is often useful for graphical representations, as many
people prefer CIE XYZ over RGB because it is considered scientifically respectable.

Transformations are not always simple, or even possible in more complicated
representations that depend on arbitrary conventions from outside colorimetry proper.
This may influence the choice of a representation. For instance, it is not really possible
to handle subtractive mixture or metameric effects in such systems as CIE Lab,9 so if the
interest is of a biological nature one had better avoid it.

8 In order to obtain some notion of what might happen — due to a variety of factors — one may collect a few dozen variations on a
well known painting from the Internet. Pairwise side–to–side comparison will reveal highly noticeable variations.
9 CIE Lab defined via an awkward non-linear transformation, so it is not fit for colorimetric calculations. In order to achieve that one
needs continual transformations back and forth. Formal work is so unwieldy as to be practically impossible.
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1.5 About the colors in the figures

In the RGB–description the color coordinates can double as the usual display RGB–
coordinates, except for the usual gamma correction. Thus many of our figures were
colored in this way. It has the advantage that one immediately sees the coordinates
when looking at the figure, something that is impossible, or would need some extensive
training, in terms of the more conventional descriptions.

We use RGB–coordinates straight when all coordinates are in the zero to one range.
Coordinate over- or under-flow is handled by hard clipping. This occurs with object colors
that are outside the RGB-cube, but inside the color solid. The under- and over-shoots are
necessarily small, the effect of clipping is essentially unnoticeable.

Problems also occur occasionally with radiant spectra shown as object colors. In such
cases we scale the coordinates so the maximum coordinate value equals one. Although
an ad hoc convention, it is the best one can do. It may lead to confusion because a
monochromatic 700nm reflectance will look black as an object color, whereas this
convention will represent it as a red. Radiant spectra cannot be displayed as object
spectra, except by way of some arbitrary convention. This applies to figure S30.

Some figures are colored where the color only has an indicative meaning. Colors in
these figures should NOT be interpreted as RGB–coordinates as intended in the paper. In
most cases that will be immediately obvious from the context. However, in order to avoid
misunderstandings, these are the figures 1, 2, 5 top and bottom right, 7–10, 12 left, 17,
19, S1, S7–S9, S12, S13, S15–S19, S22, S25–S28, S35–S37 and S43–S46.

Of course, we cannot guarantee “fully calibrated” results in print or on the Internet.
However, we reckon that the figures are good enough to prevent confusion. The advantage
is clearer, more useful figures. It is also useful as a correction on common usage, the many
painted CIE-XY chromaticity diagrams used to indicate object colors. Such diagrams
actually show equivalence classes of radiant spectra of arbitrary radiant power, thus
rendering a unique mapping on display colors impossible.

6



Supplementary Material

2 THE SHARP MAP

The “sharp map” ] is defined via the psychogenesis Ψ:

{Ψ : C Q | Ψ(RGB[99|00|00]) = ]red}, [the “sharp(]) map”], (S2)

is often considered problematic because the very “existence” of psychogenesis (Ψ) and
qualia Q are denied by physicalists. (On the issue of “Color appearance” see Fairchild,
M.D. (2013). Color Appearance Models, John Wiley & Sons, West Sussex, UK.)

Such a view is rather myopic in view of the following facts:

It is no problem to determine the structure of the map empirically. The probability
of confusing ]color A= Ψ(A) with ]color B= Ψ(B) can be measured in an objective
(behaviorist) manner. The structure of the Ψ-map in terms of the domain C can be
measured objectively with observers acting as null-detectors in the range Q.

With color naming as criterion about a dozen ]colors are distinguished. With a
production method (bypassing conceptual, linguistic thought) this number rises to the
hundreds. This is still far less than the number of physiologically discriminable colors,
estimated as up to forty million.10

In any specific application one should decide what the expected fuzziness of the sharp
map is. For critical applications one may assume 0.01–0.02 in the RGB coordinates on a
0–1 scale. For most user applications that is excessive and one may assume a fuzziness
of 0.1–0.2. That would apply to a “standard presentation.” If the context is very different
the deviations may become much higher and — perhaps worse — systematic instead of
random.

In most applications the fuzziness may be treated as isotropic. However, differences
between the teals and the oranges, etc., are certainly present, even on the 0.1–0.2 level.11

10 See:
D.L.MacAdam (1942), Visual sensitivities to color differences in daylight. JOSA 32(5): 247–274.
and
G.Wyszecki and W.S.Stiles (1967), Color science: Concepts and methods, quantitative data and formulae. Wiley, New York.
11 See:
J.J.Koenderink, A.J. van Doorn and K.Gegenfurtner (2018), Graininess of RGB–Display Space. i–Perception 9(5), 1–46.
and
J.J.Koenderink, A.J. van Doorn and K.Gegenfurtner (2019). Colour Order. i-Perception 10(4), 1–12.
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3 SUBTRACTIVE COLOR MIXTURE OF THE CARDINAL COLORS

The subtractive color mixture of RGB colors is especially simple to understand for the
case of the cardinal colors. The spectral reflectance factors are characteristic functions
and the transition loci are fixed, so we can simply multiply the RGB coordinates: it
amounts to the same as intersecting the spectral regions. Thus the subtractive mixture
table boils down to

100 110 010 011 001 101
100 100 100 000 000 001 100
110 100 110 010 010 001 100
010 000 010 010 010 000 000
011 000 010 010 011 001 001
001 000 000 000 001 001 001
101 100 100 000 001 001 101

This is illustrated in fig. S2. Of course, the set of cardinal colors is periodic, so the
“natural” representation is on the torus. (We use a mirror to view the lower side too.)

Figure S2. Subtractive color mixtures of the cardinal colors. The “horizontal” axis of
the left and right figures are the same, so are the “vertical” axes. In the case of the torus
the axis are obvious closed, in the case of the square at right that is not immediately
obvious. (Ignore the fact that the scales of the axes on the torus are necessarily unequal.)
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4 THE EDGE, OR BOUNDARY COLORS

The edge colors, or boundary colors, are basic for the object colors, as any point on the
boundary of the object color solid can be represented as the difference of two boundary
colors, or — what amounts to the same — a chord of a boundary color curve.

The boundary color loci are smooth curves that run between the white and the black
apex of the color solid. They are twisted curves, irregular helices of half a turn (fig. S3).

Different from the spectrum, which is essentially invisible for the object colors (each
spectral component has infinitesimal intensity), the boundary colors are easily displayed.
You can see them by looking at a black-white edge through a prism, that is how they
were disovered by Goethe. fig. S4 yields an impression.

Figure S3. Different (orthographic) perspectives of the edge–color series plotted as
curves in CRGB. The view from the achromatic direction (left) is perhaps the most
informative. This figure also shows the intimate relation to the unit cube. (For colors see
fig. S4.)

The two boundary spectra are mutually complementary, for geometrically they are
related through the central symmetry of the color solid.

Figure S3 shows three mutually orthogonal orthographic views of the boundary color
loci. It also reveals their relation to the RGB cube.

The warm boundary color sequence is black–red–yellow–white, whereas the cool
sequence is white–cyan–blue–black. That is orange and teal.12 Note that the curves run
outside the RGB cube, that is because they lie on the surface of the color solid. However,
their relation to the RGB–cube is seen to be very intimate.

12 J.J.Koenderink and A.J.van Doorn (2020). Orange & Teal. Art & Perception, in press.
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That the boundary colors provide the natural interface to the spectral properties is due
to the fact that the correlation length of the spectrum envelope of the spectral reflectance
functions of natural materials is dominated by the spectral slope. This causes object
colors to cluster about the boundary color loci in the RGB cube. The result is a dominance
of teal-oranges (spectral slope) over purple-greens (spectral curvature), which is evident
in databases of spectral reflectance factors, RGB colors and the statistics of images of
natural scenes.13

Figure S4. Impression of Goethe’s Kantenspektren. The colors are just the displayed
values of the accumulated spectral components of white. (These two spectra are
“supplementary,” they mutually add to white. Supplementary implies “complementarity,”
a weaker concept.)

13 See: J.J.Koenderink and A.J.van Doorn (2017). Colors of the sublunar. i-Perception, 8(5), 1–30.
and
J.J.Koenderink, A.J. van Doorn and K.Gegenfurtner (2020). Colors and things. i-Perception 11(5), 1–43.
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5 SCHOPENHAUER’S BIPARTITIONS OF THE SPECTRUM AND
THE OPTIMUM TRIPARTITION

Arthur Schopenhauer noticed the fact that the colors obtained by splitting the spectrum
of white into two adjacent parts are especially striking for just a few bipartitions. That
can be seen in this illustration (fig. S5):

Figure S5. Schopenhauer-style bipartitions of the source spectrum E(λ).

Illustration fig. S6 shows Schopenhauer’s analysis. His color terms are:
Schwarz black
Violett he apparently indicates blue, the complementary of yellow
Blau he apparently indicates teal, the complementary of orange
Grün green, here apparently a cyanish green
Roth red, but here apparently purplish red
Orange orange
Gelb yellow
Weiss white

Whether Schopenhauer’s red–green is turquose–red or green–purple (or something in
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Figure S6. Schopenhauer’s original scheme. Notice the fractions. In terms of RGB
yellow:blue would be 2/3 : 1/3, green:red 1/3 : 1/3. How Schopenhauer arrived at the
fractions is unclear.

between) is hard to say. See for yourself. In the illustration we indicated white–black,
turquoise–red and teal–orange. It is “visually evident” that there are indeed “best cuts”
though.

Because Schopenhauer’s cuts overlap, he really indicated a tripartition. For a spectral
tripartition one may suggest a formal criterion: the largest inscribed crate in the color
solid. The definition is (as should be!) affinely invariant. It is expected to yield a unique
crate. The way to check is by exhaustive search (fig. S7).

Figure S7. Dividing the spectral range into three parts yields three colors, the three
colors span a volume. Here that volume is plotted as a function of the spectrum cut loci.
There exists a unique optimum.
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The expectation is apparently validated. There exists a pronounced optimum.

It is of some interest to consider the tripartition for the contraction and expansion maps
as defined in the main manuscript (fig. S8).

The tripartition induced by the crate gives rise to a number of relations that are of some
interest figs. S9 to S11.

Figure S8. The contraction and expansion maps have intuitively obvious matrix
representations. The rows of the contraction map matrix are the color matching functions.
The columns of the expansion map matrix are the characteristic functions of the parts of
the optimum tripartition. (We plot the transpose to save space.) Colors are contracted
spectra, canonical spectra are expanded colors. Unlike CIE MXYZ these matrices are
intuitively structured.

Figure S9. These are the “Hering opponent channels.” They correspond to the
{h1,h2,h3}–basis. The h2 effectively computes a first order derivative (slope) of the
spectral envelope, whereas h3 computes the second order derivative (curvature) of the
spectral envelope. That is what color is in a biological, evolutionary sense.

The Hering components (fig. S9)14 are an RGB related representation in which the
spectral mean, slope and curvature are given a key role. Although this representation was
originally derived from purely phenomenological arguments, it is actually quite close to
the natural representation from ecological physics.

14 E.Hering (1905–1911). Grundzüge der Lehre vom Lichtsinn. Sonderabdr. a. d. Hdb. d. Augenheilkunde. Voss, Leipzig.
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Figure S10. Two different projections of the edge–color series. At left a projection on
the achromatic axis (essentially the black-white Hering opponent channel (fig. S9)). It is
bimodal. At right the length of a projection on the plane orthogonal to the achromatic
direction. It is trimodal.

The two– or three–peaked graphs (fig. S10) are frequently encountered in various
regions of classical color science. In many cases the authors are puzzled and try to argue
in the direction of an overall unimodal shape — like the CIE luminance function.15

The angular rate with wavelength (fig. S11) is of interest because it clearly indicates
that the wavelength is just an arbitrary continuous parameter. Wavelength is not relevant
with respect to object color. The way to deal with this in a principled manner was intuited
by Wilhelm Ostwald in the early twentieth century.

15 CIE (Commission Internationale de lÉclairage) (1932). Commission Internationale de lÉclairage proceedings 1931. Cambridge
University Press, Cambridge, UK.
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Figure S11. In spectral ranges near 479nm (cyan) and 569nm (yellow) the angle
parameter varies especially fast with wavelength.
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6 THE SEMICHROME LOCUS

The red line in fig. S12 is the semichrome locus. Thus the semichromes are the “equator”
of the color solid and have the highest possible chromaticity. Note the relation to the
boundary colors (yellow) and the shape of the lines of equal achromatic content in the
chromaticity diagram.

Figure S12. Lines of equal achromatic content in the chromaticity diagram.

The semichromes are easily computed because their transition loci are mutually
complementary. Here is a diagram (fig. S13) that is more “traditional” than the (much
nicer!) one printed in the manuscript:

Figure S13. This is the Ostwald diagram in more conventional form. (The extra-spectral
part shown in fig. S19 has been omitted.) Note the partition into short pass, medium pass,
long pass and medium stop spectral reflectance functions. These correspond to the ]teal,
]green, ]orange and ]purple object color families. This tetra-partition might be called
“Hering partition” It is different from the tri-partition based on the optimum crate.
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We consider a few more perspectives on the semichromes (figs. S14, S15, and S26).

Figure S14. At left, projection of the semichrome color curve on h1 reveals six locations
that visually stand out. They come as two triples. These correspond to the chromatic
vertices of I3RGB. Note that the hue range is — different from the spectral range —
periodic! At right a string of 24 beads of semichromes is plotted next to the cube. The
curve closely hugs the R-Y-G-C-B-M-R–edge progression.

Figure S15. At left the RGB–coordinates of the semichromes as a function of hue angle.
Note the over and undershoots. At right the red, green and blue parts of the semichrome
colors. Find the four families!

Figure S14 shows that the semichromes are closely related to the RGB cube. They
form the periodic sequence red–yellow–green–cyan–blue–violet–(red), but – of course
— run strictly outside of the RGB–cube. After all, they lie on the surface of the color
solid. If you consider the projection on the achromatic axis, you clearly see that the so
called “cardinal” colors are indeed special. It is also evident that they come in two types:
the “primary cardinal colors” red, green and blue, and the “secondary cardinal colors”
cyan, magenta and yellow. The primary and secondary cardinal colors are mutually
complementary, those pairs are just the Schopenhauer bipartitions (section 5).
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Figure S15 plots the RGB coordinates of the semichromes. If you shave off the under–
and over– shoots, you get the familar RGB implementation. This once again shows the
close connection between the RGB coordinates and the color solid.
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7 CANONICAL SPECTRA

What is a “canonical spectrum” for an RGB color? Since there are infinitely many choices
— except fot the colors on the boundary of the color solid — it is essentially up to you to
take your pick! However, some choices are far more useful than others. But, as expected,
the proper choice depends upon your context.

In our option the canonical spectrum based on the optimum tripartition wins hands
down in almost any case. However, there is certainly something to say for Ostwalds’
choice. Fortunately, in most cases the choice doesn’t really make all that much difference.
fig. S16 show a typical case.

Figure S16. A fairly typical case. Here the spectral reflectance factor of a violet flower
has been approximated in various ways. Notice that the canonical spectra (either tripartite
or Ostwald) do a good job of capturing the bulk of the action. The minimax and maximum
entropy (section 10) are fairly close too. The metameric component is well captured by
the difference between the true spectrum and the tripartite canonical spectrum (say). A
simplification is to project that on the three metameric blacks (section 12), shown at right.
Here the black curve shows the metameric difference with the canonical spectrum, the
red curve the projection.

So what to do? In practice, you may want to decide on the basis of the structure of the
description. Figure S17 compares four obvious contenders.

The Schrödinger representation16 is the one that would be picked by a physicist
(Schrödinger!) without so much as thinking twice. It is also popular with mathematicians
and theoreticians dealing with colorimetry. That is because the description centers on
what immediately hits the eye, that is the beam scattered by the object. It is just barely
possible to speak of “object color” by introducing a unit level, that of a white reference
object. This is essentially the choice of the (majority) of vision scientists who will
strongly recommend CIE LAB. Such people have a hard time to accept black as a “real”
color. That is because to a physicist black is nothing.

16 E.Schrödinger(1920), Theorie der Pigmente von größter Leuchtkraft. Annalen der Physik 4(62), 603–622.
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Figure S17. Some useful “canonical spectra.” Top left the tripartion of white. Top right
Ostwald’s proposition. Bottom left Schrödinger’s attenuated optimal color. Bottom right
an interpolation between central gray and an optimal color. In all cases one may speak of
color, black and white contents, although the meanings would differ. Schrödinger would
not have used “black content” but would prefer to speak of an attenuated spectrum. Black
and white only make sense in the generic object color context, they are meaningless in
generic (context-free) colorimetry.

Phenomenologically black is not less real than white. That was Hering’s (psychologist)
opposition to Helmholtz (physicist).17 The point of friction is that black and white are
mental entities, whereas dark and bright (when suitably defined) are physical entities. It
is the old notion of Goethe that color is where the mind meets the world.18

If you accept that black is “something,” then Ostwald’s proposition19 that any color
is made up of a “full color” (Ostwald proved to his satisfaction that full colors are
semichromes), some white and some black makes good sense. That works fine in the
Ostwald description and it works fine with the RGB description.

The HWB of Alvey Ray Smith (if only he had made it HWK, for “B” is already used for
blue!) is the implementation of Ostwald’s ideas in RGB, although Smith didn’t notice.20

It is by a wide margin the most “natural” description. Smith even called other RGB

descriptions flawed, although — as an early engineer in image processing and computer
graphics — he had defined a few of these (HSV, HSL, still in common use) himself.

Figure S17 compares the various choices. Take your pick.

17 See:
H. von Helmholtz (1867). Handbuch der physiologischen Optik. Voss, Hamburg und Leipzig.
and
E.Hering (1905–1911), Grundzüge der Lehre vom Lichtsinn. Sonderabdr. a. d. Hdb. d. Augenheilkunde. Voss, Leipzig.
18 J.W.Goethe (1810) Zur Farbenlehre. Tübingen: Cotta.
19 W.Ostwald (1917). Die Farbenfibel. Unesma, Leipzig.
20 A.Smith and E.Lyons(1996). HWB — A more intuitive hue-based color model. Journal of graphics, gpu, and game tools 1(1),
3–17.
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8 OSTWALD MISMATCHES

As discussed in the manuscript, Ostwald’s intuition (fig. S18) is a fine heuristic, but
deviates from the actual colorimetric structure. The deviations are noticeable in fig. S19,
the mismatch angle ξ, indicated in ??, has been plotted in fig. S20. We discuss some of
the relevant geometry.

Figure S18. These are the two sheets of Ostwald’s “slide rule.”

Consider fig. S20 top–left. Here A is the achromatic point and B a semichrome. This
implies that the diagonal is parallel to the tangent t at the semichrome locus. The
semichrome B is given by (using the notation used in the article)

B =

∫ λ2

λ1

M R(λ)E(λ) dλ =

∫ λ2

λ1

C(λ) dλ, (S3)

Where C(λ) dλ is a “monochromatic color,” and λ1,2 are mutually complementary. Note
that δB = C ′ δλ2 − C δλ1, where δλ1,2 are arbitrary variations. Because Cδλ1 and
C ′δλ2 are mutually complementary, δB lies in the plane spanned by the achromatic axis
and the diagonal CC ′. This proves that indeed CC ′ ‖ t (fig. S20).

If the semichrome locus were an ellipse (which it is evidently not!), the tangent t′ at C
would be parallel to AB (so called “conjugate diameters” of an ellipse). If the semichrome
locus were a circle (which again, it is evidently not!), the tangent t′ at C would be ‖AB
and ⊥AC. This is were Ostwald went wrong as he habitually thought of the semichrome
locus as the COLOR CIRCLE (as in fig. S18). The BAC and the intersection tt′ would be a
square. As evident from fig. S20 it is a general quadrangle instead.

However, Ostwald’s intuition was not completely off, the interquartile range of the
mismatch is ±8.6◦, deviations less than ten percent from the “ideal” 90◦ angle subtended
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Figure S19. In this “Ostwald diagram” Ostwald’s intuition covers only the dashed
diagonal lines. The domain is the product of the color circle with itself, that is
S1 × S1 = T2, the torus. Thus the diagram is doubly–periodic. At top we shade an
extra-spectral part. A precise computation of the full colors reveals that the oblique
dashed lines suggested by the heuristic are actually intricate curves (blue dominant
wavelengths, yellow complementary dominant wavelengths). The original intuition
remains an excellent approximation.

by AB and t. It would have been nice if the semichrome locus had been circular, but
it isn’t. Biological evolution only does effective hacks, this one is apparently “good
enough.”
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t[h!]

Figure S20. Ostwaldian mismatches. The rounded hexagon is the semichrome locus
in the chromaticity diagram. At top-left the basic geometry: B is semichrome, thus
the tangent t is parallel to the diagonal CC ′, but the tangent t′ at C is not parallel to
AB, except for some remarkable locations. At top-right the semichromes for which the
mismatch vanishes. At bottom a plot of the mismatches. They start to be of significance
for a color circle of 24-steps, but are irrelevant in generic applications.

Figure S21. This “chromaticity diagram” is an orthogonal view from the achromatic
direction. For object colors, it is far more useful and intuitive than the familiar CIE
conventions. This shows the achromatic axis (central point, both white and black), the
semichrome locus (in this projection the outline of the color solid), the edge–colors
(figure–eight curve), the limiting spectrum generators and their complementaries (thus
indicating the types of Ostwald full color families) and the cardinal color locations. It
also shows the mutually orthogonal Hering directions, green–purple and teal–orange.
This offers a convenient canvas to plot all kinds of things in an intuitive context. (fig. S22
and ??.) In the figure at right we added the spectrum cone generators (in the exterior)
and the RGB–cube (the hexagon).
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Figure S22. This illustrates how the cool edge color curve in the chromaticity diagram
(fig. S21) can be used to find interesting relations. Notice that aa′ and bb′ are mutually
parallel, thus the dashed red line is the semichrome chord. All other parallel chords are
shorter and indicate tints and shades of the same dominant wavelength. The chord of
zero length is the tangent cc′ and indicates the dominant wavelength of the semichrome.
In the figure at right all blue chords have parallel tangents at their ends (one example
shown). Thus they all indicate semichromes. The red lines indicate the complementaries
of the spectrum limits.

In fig. S21 we show the “chromaticity diagram” with the semichrome locus (the outline,
the semichome locus is the “equator of the color solid) and the boundary color loci.
This is a very useful structure. The figure shows how you can do interesting (certainly
not trivial) computations graphically. Once you understand such constructions, you
significantly honed your intuitive understanding of object colors.

Figures S22 and S23 take this a step further. Figure S23 also illustrates the origin of
Ostwald’s error.
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Figure S23. This shows even more structure than fig. S22. All red lines (a, b, c) are
mutually parallel, so are the blue (1, 2, 3, 4) ones. The dashed orange line (marked “X”) is
drawn perpendicular to the blue ones. Note the angle ξ subtended with the red lines. This
is the quantitative error of Ostwald’s slide rule. Note also that P is on the semichrome
locus, whereas P (as z and z) is on the edge–color curve. (The blue tangent 3 is at z.)
Q is the semichrome color, whereas P, R are the pass band limits. (In the figure the
dominant wavelength of the semichrome is 546.5nm (Q), the band limits are 481nm (P)
and 591nm (R).) This illustrates the meaning of the chromaticity diagram (fig. S21). The
reader may want to construct such diagrams for the other semichrome families. (Note: in
typical applications your construction will commence from the point Q.)
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9 AN OSTWALD BASIS AND THE RGB BASIS

The Ostwald system uses an over-complete, continuous basis (fig. S24). The mixtures
of the achromatic colors with the semichromes span a double cone.21 The double cone
exhausts 78.5% of the color solid, so it does better than the RGB cube (64%). However, the
double cone and the RGB cube strongly overlap, the Jaccard index is 0.80. A comparison
of the color solid, the Ostwald double cone and the RGB cube reveals their overall
similarity (fig. S25).

Figure S24. The Ostwald double cone as it should have been. Ostwald used a circle
instead of the semichrome locus.

Thus the Ostwald basis is really different from the tripartite (optimal basis). In trying
to compare one might try to set up a minimal (three basis vectors) basis of semichromes.

The green vector of the tripartite basis is an optimal color with a passband that is
slightly narrower than a semichrome. The difference is small though. One might accept
the semichrome with the same dominant wavelength as the tripartite green for an Ostwald-
type basis vector.

As a suitable red vector the semichrome with pass band λUV–λIR is an obvious, unique
candidate. As a suitable blue vector the semichrome with pass band λUV–λIR is the
obvious choice.

21 Ostwald did not use this construction, he used a circle instead of the semichrome locus. This looks good, but is formally awkward.
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Figure S25. A comparison of the color solid, the Ostwald double cone and the RGB cube,
plotted at the same scale. The overall similarity is striking.

Figure S26. Ostwald uses a continuous basis, instead of a discrete (e.g., RGB basis). It
is easily possible to define three “special” full colors that represent red, green and blue
though. However, they do not form a true spectrum tripartition, since their passbands
overlap. Although the Ostwald system is elegant it is very hard to implement. In fact, we
do not know a single useful instance. In practice, most of Ostwald’s (valuable!) notions
work just as well in the RGB basis.

This set of vectors defines a basis (not actually used by Ostwald) that is very similar
to the tripartite basis, but fails to be orthonormal. However, the matrix of pairwise dot-
products is not that far from I3. This basis is somewhat different from the tripartite basis
(fig. S26). It apparently is less than elegant to use an non-orthonormal basis, moreover
this Ostwald crate (not his double–cone!) captures a (only very slightly) smaller gamut
than the RGB basis does. Plenty of reasons to prefer RGB in practice, although the
Ostwald formalism is nice enough.

The Ostwald full colors lie exactly on the semichrome locus because they are
semichromes. The RGB full colors (cardinal colors) can in general not be semichromes,
because the only possible transition loci are fixed and not mutually complementary. As
expected, green and magenta do not lie on the semichrome locus, whereas the other
cardinal colors do. Note the difference between the Ostwald and the RGB basis vectors
(fig. S27).
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Figure S27. The RGB (colored cuboids) and Ostwald locations (colored spheres) of the
cardinal colors in relation to the semichrome locus (gray). The cool boundary colors
are drawn in blue, the warm boundary colors in red. Over some stretches the boundary
color loci coincide with the semichrome locus. The relation to the RGB cube (light gray,
thinnish) is very close. The deviations between the RGB and the Ostwald primaries are
most noticeable in the green and purple.

The continuous Ostwald basis is unwieldy, both formally and in implementation (say
display units). Pragmatically, it was convenient for Ostwald’s chemical applications. It is
next to impossible in printing or electronic display technologies.

Another continuous basis is the set of all optimal colors. It captures the maximum
gamut, the full color solid. A natural canonical spectral reflectance is the linear mixture
(of the spectra, not the colors!) of the optimal color collinear with the center of the color
solid, where the spectrum of the centre is taken as flat. In principle such a system is
impossible to beat, in practice its implementation would be a nightmare.

Despite that the Ostwald heuristic is quite useful, it has been largely ignored in
recent times (fig. S28). It was widely used in continental Europe (including Russia)
before WW–II, after that largely ignored. Reference points are Ostwalds Farbenfibel
of 1916, its translation into English The Colour Primer of 1930, Bouma’s Kleuren en
kleurenindrukken of 1946 (translations into English, French and Spanish soon after) and
the standard text on colorimetry by Wyszecki and Stiles Color Science of 1960.
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Figure S28. The occurrences of Ostwald’s terms over a century (1910–2010) in the
German and English literature. We use Google n-grams search for the indicated search
terms. Abundancies have been normalized on the mean. No matter how you look at it,
the end of the Ostwald description is in the decade after WW–II. From then CIE XYZ
takes over, in the 1990’s followed by CIE Lab.
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10 MINIMAX AND MAXIMUM ENTROPY HEXAPARTITION
SPECTRA

Given an object color, is there a “best” hexapartitive reflection spectrum (section 14)?
Since there is no unique solution, one needs a constraint. Suitable candidates might be
maximum entropy solutions or “minimax” ones. We found the latter generally somewhat
superior.

Suppose the color is C. Let the hexapartition coordinates be {p1 . . . p6}, with
0 ≤ pi ≤ 1 for i = 1 . . . 6. Let the six bin colors be {C1 . . . C6}. Then the color
corresponding to Cp = {p1 . . . p6} is

∑6
i=1 piCi. (Notice that pi = 1 for i = 1 . . . 6

yields the white color.) We require Cp = C, and minimize the total variation
[max p−min p].

Thus one obtains a hex spectral reflectance function for any color that is of minimum
total variation.

Maximizing
∑6

i=1(−pi log2 pi) yields maximum entropy solutions. This works quite
well too. In the article we stick to the minimax solutions for the sake of simplicity.

The hex spectra are “canonical spectra” of some kind, they are only metamers of
the actual spectra that caused the color. In experiments on databases of ecologically
valid spectral reflectance factors, we find that both methods tend to yield very good
approximations to the actual spectra. The reason is — no doubt — that actual spectra
tend to be quite smooth.
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11 THE BLACK BODY FAMILY OF SOURCES

For a thermal radiator in thermodynamic equilibrium Planck showed that the spectral
radiance (using SI units in W·sr−1·m−3) on wavelength basis is a function B(λ, T ),
which depends on the physical constants c, velocity of light, h, Plank’s constant, and kB ,
Boltzmann’s constant.22

B(λ, T ) =
2hc2

λ5
1

e
hc

λkBT − 1
. (S4)

As a function of wavelength the radiance has a single peak at λpeak = b/T , where
b = 2.8978 · · · 10−3m·K. The peak is at the centre of the visual range (525nm)
for T = 5520◦K. The spectrum is almost an equi-energy spectrum (deviations less
than ±10%). For T = 4081◦K the peak is in the UV, for T = 7430◦K it is in the IR.

Reckoning radiance with respect to the T = 5520◦K case, one has

Brel(λ, T ) = c1λ
−5(e

c2
λT − 1)−1, (S5)

with c1 = 5.6764 1015, c2 = 1.4388 107, where T is in degrees Kelvin and λ in
nanometers. Thus Brel(525, 5520) = 1, whereas Brel(525, T ) ∝ T 4 (the Stefan–
Boltzmann Law). This is the most convenient form for vision–related problems.
(Figure S29.)

22 R.Feynman, R.Leighton and M.Sands(1964, 1966). The Feynman Lectures on Physics. Library of Congress Catalog Card
No. 63-20717, Washington DC.

Figure S29. At left black body radiant power spectra, normalized to one at 530nm.
At top–right the color of a white standard in the absence of AWB (“automatic white
balance”). We also show the influence of spectral slope and curvature individually.
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In order to get the magnitudes in context, the sun’s photosphere radiates at 5777◦K,
the blue sky has a “correlated color temperature” of up to 12 000◦K, whereas a tungsten
bulb (a thermal radiator) radiates at 3400◦K and an ancient Roman oil lamp burning
animal fat below 1000◦K. This covers about the range encountered in real life. Roughly
speaking, candle light has a negative spectral slope, sky light a positive spectral slope,
normal daylight is not too far from the equal energy spectrum. Human vision needs to
deal with all of these.

The black body radiator family is very convenient because it is ecologically relevant
and well defined. Although only a one-parameter family, the fact is that — give or take
a little slop — this pretty much exhausts the range of ecologically important sources.
Fancy Las Vegas bars are exceptions, they are based on rare earth (especially lanthanides)
atomic electronic structures.

11.1 A two-parameter set of radiant spectra

The black body family varies mainly along the spectral slope dimension. It does a good
job of catching the major variation, but it fails to cover the range. This is a reason for
kludges like “correlated color temperature” and so forth.23 For a generic set of sources

23 G.Wyszecki and W.S.Stiles (1967). Color science: Concepts and methods, quantitative data and formulae. Wiley, New York.

Figure S30. Spectral slope and curvature eq. (S6) in the RGB chromaticity diagram. This
diagram is similar to the CIE–xy-diagram, but the RGB primaries lie on an equilateral
triangle. It is often called “Maxwell triangle,” despite the fact that Maxwell himself
calls it the “Mayer triangle” (after Tobias Mayer, 1723–1762). The white curve is the
Planckean locus.
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one needs to include spectral curvature. This adds another parameter and thus covers
a two-parameter range of chromaticities. More general sources then simply differ by
metameric black spectra, so the choice is non-committal.

Since radiance is a non-negative quantity, its natural domain is logarithmic. Thus one
defines a generic family of source spectra as (s the slope, c the curvature)

Ss,c(λ) = es (
λ−λ0
∆λ )+ 1

2c (
λ−λ0
∆λ )2 , (S6)

with λ0 =525nm, ∆λ =100nm (say). The set of black body spectra is captured quite
well (so little new here), but there is a second degree of freedom (fig. S30).

11.2 Random daylight spectra

In order to generate “random daylight spectra,”24 one might use the two-parameter
radiant spectra defined in the previous sub-section, and add a contribution due to the
scattering from the immediate environment. These latter spectra can be based on some
statistical model for generic spectral reflectance factors.

One needs to draw the two parameters from a distribution that may be estimated from
a database of daylight spectra obtained from a large range of conditions. Using a two
parameter normal distribution, one requires two means and a covariance matrix. However,
the overall intensity is irrelevant, thus there are four degrees of freedom. The fraction of
ambient scattering yields another degree of freedom, as do the degrees of freedom in the
model of spectral reflectance factors.

Such random daylight generators are essential in the numerical study of the effects of
metamerism. One would certainly like to have ecological statistics on the parameters.
Unfortunately, such are hardly forthcoming. In practice one has to make do with
“intelligent” guestimates.

24 See:
J.J.Koenderink, A.J. van Doorn and K.Gegenfurtner (2020). Colors and things. i-Perception 11(5), 1–43.
and
J.J.Koenderink and A.J.van Doorn (2020). Orange & Teal. Art & Perception, in press.
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12 RANDOM REFLECTANCE SPECTRA

When one studies databases of natural spectral reflectance factors or even RGB colors
(images are a great source), one finds that spectral reflectance factors are comparatively
“smooth” and that gamuts of pixels fail to fill the RGB cube homogeneously.25

For a typical image of a natural scene, the correlation matrix for the RGB–coordinates
will be close to

h =

 1 1− ξ 1− η
1− ξ 1 1− ξ
1− η 1− ξ 1

 , (S7)

where 0 < ξ � 1, 0 < η � 1. In many cases one finds η ≈ 2ξ, we will use that here
for the sake of simplicity. The eigenvectors are approximately {1, 1, 1}, {1, 0,−1} and
{−1, 2,−1}, that is the Hering basis.

The key point is the ecological fact that spectral reflection functions tend to be smooth.
That implies that they will be well approximated by level, slope and curvature. That is
indeed found in studies that consider principal components of the spectral reflectance
functions.26. This fact is also useful in attempts to discount the illuminant.27

Apparently the Hering basis serves to decorrelate the RGB channels. Indeed, the first
Hering vector estimates the spectral level, the second the spectral slope, and the third
the spectral curvature. The Hering color matching functions are like a set of receptive
fields28 acting on the spectral envelope.

The ratio of eigenvalues are 1 : 2ξ/3, 2ξ/9. Thus the black-white dimension by far
dominates whereas the teal-orange dimension has thrice the power of the purple-green
dimension. For a typical value ξ ≈ 0.1 the ratios are 1 : 0.067 : 0.022.

This implies that the envelope of the spectral reflectance factors has a correlation length
of more than the width of the visual spectrum. Almost all of the power is in the level,
much less in the slope, and even less than that in the curvature.

25 See:
J.J.Koenderink, A.J. van Doorn and K.Gegenfurtner (2020). Colors and things. i-Perception 11(5), 1–43.
and
J.J.Koenderink and A.J.van Doorn (2017). Colors of the sublunar. i-Perception, 8(5).
26 As for instance Vrhel, M.J., Gershon, R. and Iwan, L.S. (1994) ”Measurement and analysis of object reflectance spectra”.
Color Research and Applications, 19, 4–9; Maloney, L. (1999). Physics-based approaches to modeling surface color perception. In
K.R. Gegenfurtner, and L. T. Sharpe (Eds.), Color vision: From genes to perception (pp. 387–422). Cambridge University Press.
27 As for instance B. Singh, W. Freeman, and D. Brainard (2003), “Exploiting spatial and spectral image regularities for color
constancy,” in Proc. 3rd Int’l Workshop on Statis. Comp. Theories of Vision, Nice France, 2003; S. Jimenez and J. Malo (2014),
“The Role of Spatial Information in Disentangling the Irradiance–Reflectance–Transmittance Ambiguity,” IEEE Trans. Geosci. Rem.
Sens., vol. 52, no. 8, pp. 4881–4894
28 J.J.Koenderink and A.J.van Doorn (1990). Receptive field families. Biol. Cybern. 6, 26, 291–297.
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This has major implications for the RGB gamuts to expect. For instance, consider
one of the simplest conceptual models, which might be a random telegraph wave
toggling between all or none reflectance.29 There is just one parameter, which is
the expected number of transitions within the visual range. For the statistics of the
transitions we assume a renewal process, say an exponential distribution. Then what
gives? There are four qualitatively different regimes, depending on the expected number
of transitions N :

N � 1 if the number of transitions is very low almost any instance will be zero or one with
fifty-fifty change. Thus one has either black or white colors, chromatic colors will
be very rare;

N ≈ 1 if the number of transitions equals one, one has either a warm or a cool edge color,
with fifty-fifty chance. Thus the edge color loci will be populated, but hardly anything
else. That implies that the colors will be teals and oranges, there will be no purples
and greens;

N ≈ 2 if there are two transitions one has an optimal color. Thus the boundary of the color
solid will be populated and hardly anything else. Teal, oranges, purples and greens
all occur;

N � 1 if there are very many transitions the spectrum will almost be a metameric gray.
Almost all colors will cluster about the gray point. The diameter of the cluster will
depend on the number of transitions, the larger N , the smaller the diameter (easy to
estimate by way of a statistical argument).

These predictions are well borne out (figs. S31 and S32). From daily experience one
estimates that we are living in a regime N ≈ 3.

The width of the visual range is about 200nm, measures via the edge color curves
from 0.1 distance to the black point to 0.1 distance from the white point. If we try
N = 1/10, 1, 2, 20 we find the correlation matrices(

1 0.95 0.89
0.95 1 0.95
0.89 0.95 1

)
,
(

1 0.57 0.20
0.57 1 0.57
0.20 0.57 1

)
,
(

1 0.38 0.00
0.38 1 0.38
0.00 0.38 1

)
,
(

1 0.05 −0.01
0.05 1 0.05
−0.01 0.05 1

)
. (S8)

This is much as expected. The corresponding color gamuts are shown in fig. S31. The
distributions in RGB space are shown in fig. S32.

29 J.J.Koenderink (2010b). The prior statistics of object colors. JOSA A 27(2), 206–217.

Frontiers 35



Supplementary Material

Figure S31. Color gamuts for the random telegraph wave spectra.
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Figure S32. The color gamuts for the four regimes of the random telegraph wave spectra.

Frontiers 37



Supplementary Material

If we study databases of spectral reflectance factors, we find that nearly all show a
power spectrum of the spectral envelope that falls off with an exponent of about four.30

A simple model assumes that the spectral envelope is due to a superposition of random
local instances. A suitable model is a Laplace pulse:

p(x, x0, τ) = ±e−
|x−x0|
τ

2τ
(S9)

where x0 denotes the location, and where the width at half height is 2τ log 2 ≈ 1.386τ .
Its Fourier transform is a Cauchy, or Lorenz, distribution. A random superposition of
many of such pulses yields a fractal signal with power spectrum

S(f, τ) =
2
√

2
πτ

(1 + f2τ2)
2 (S10)

which falls off with the inverse fourth power from the frequency f0 = 1/τ . The
corresponding autocorrelationfunction has a width δ ≈ 3.36τ .

Here we have a simple model that allows the generation of random instances.31

A problem is that the spectral reflectance factors are only a kind of mirror image of
the actual physical domain. In terms of the Kubelka-Munk model32 one should generate
instances of the “spectral signature” and transform that to the unit interval.33

Such a simple model readily accounts for the bulk of data bases of spectral reflectance
factors. Apparently, with such a simple model of the physics one may abstain from a
detailed statistical study of the ecology of the optics of the human life world.

The relative abundance of achromatic, teal–orange and purple–green color families is
critically dependent upon the spectral correlation width (fig. S33). This is understood
when one studies fig. S34. When the correlation length is much smaller than the visual
range one obtains a globular cluster of colors centered on mid gray. All hues (oranges,
teals, purples and greens) are about equally present. If the correlation length is much

30 J.J.Koenderink, A.J. van Doorn and K.Gegenfurtner (2020). Colors and things. i-Perception 11(5), 1–43.
31 A numerical method might use the FFT. In this cases one should be wary for artifacts due to the periodicity, as this would boost
the purple-greens.
32 See:
G.Kortüm (1969). Reflectance spectroscopy Principles, methods, applications. Berlin: Springer.
and
P.Kubelka and F.Munk (1931). Ein Beitrag zur Optik der Farbanstriche. Zeits. f. Techn. Physik 12, 593–601.
33 See: J.J.Koenderink, A.J. van Doorn and K.Gegenfurtner (2020). Colors and things. i-Perception 11(5), 1–43.
and
J.J.Koenderink and A.J.van Doorn (2017). Colors of the sublunar. i-Perception, 8(5).
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larger than the visual range one sees an annular cloud that roughly follows the edge color
curves. Thus the colors will be oranges and teals.

This once again reveals the fundamental importance of the Goethian Kantenspektren.
Goethe’s intuitions were to the point, although he could not foresee the reasons, which
are due to ecological optics (physics).

This is the final blow to the notion — popular with many philosophers and writers of
pop-science — that colors are actually “mental paint” for wavelengths. Monochromatic
beams are entirely irrelevant for object colors. The correlation length for articulations of
the spectral envelope is perhaps two or more times the width of the visual spectrum.

Figure S33. The abundancies of hues for various values of the correlation length (stated
in nanometers, remember that the with of the visual range is about 200nm). For small
correlation length all hue are about equally abundant, but for large correlation length
teal–oranges far outnumber the purple-greens. The reason is that the gamut concentrates
upon the edge color loci.
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Figure S34. The color gamuts for some spectral reflectance factor from a simple model
of ecological physics. In the rows from top to bottom the correlation length goes from
small to large.
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In combination with statistical models of the daylight spectrum one is all set to study the
effects of metamerism on RGB colors. This is of great importance for the case of object
colors as it largely determines the fuzziness of RGB space. The resulting fuzziness
far exceeds the anatomical/physiological graininess as reported by psychophysics.
Apparently human color vision in the current state of evolution is largely determined by
ecological optics, that is physics.
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13 CHANGE OF ILLUMINANT

Because of the automatic white balance mechanism, a variation of the illuminant spectrum
has only minor influence on the object colors. In the ideal case of perfect canonical
spectral reflectance factors and perfect canonical irradiance spectra there would not be
any influence of the source at all, because

C =

∫ λIR

λUV

M R(λ)S(λ) dλ /

∫ λIR

λUV

MS(λ) dλ, (S11)

would be independent of the source spectrum S(λ) since equal constant factors in the
integrands cancel.

With actual spectra it is different, what we will see is due to the effects of metamerism.
Fairly extreme cases are shown in figs. S35 and S36. These examples cover about the
range relevant to generic human vision. Notice that automatic white balance is evidently
not perfect, but is amply good enough for the early hominin hunter-gatherer life style.34

In fact, the effects of metamerism are remarkably minor. This may well be a major
factor in the evolutionary advantage of having a color vision system as humans actually
possess.

Figure S35. AWB renders the orthographic projection of the color solid for very different
sources quite similar. The red curve is for 3000◦K, the blue one for 12 000◦K and the
black one for the equal-energy spectrum E(λ). Note how close these projections are,
even for a rather wide range of sources.

The sections through the achromatic axis (fig. S36) reveal small differences for the
various hues. The shape of the color solid as a whole is affected. However, it hardly pays

34 See:
J.J.Koenderink, A.J. van Doorn and K.Gegenfurtner (2020). Colors and things. i-Perception 11(5), 1–43.
and
J.J.Koenderink, A.J van Doorn and K.Gegenfurtner (2018). Graininess of RGB–Display Space. i–Perception, 9(5), 1–46.
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Figure S36. AWB renders the color solid for very different sources quite similar. The
red curves are for 3000◦K, the blue ones for 12 000◦K and the black ones for the E(λ)–
spectrum. Again, note how close the views are for this broad gamut of sources. These
are sections through the (here vertical) achromatic axis, a “12 page Ostwald Atlas.”

to go into the nitty gritty details. For the hominin it would suffice to use a fairly coarse
sampling of the RGB–cube. But even a gamut as small as a few dozen distinct colors
would probably be amply sufficient to drive evolution.35

35 J.J.Koenderink (2018). Colour in the Wild. de Clootcrans Press, Utrecht, the Netherlands.
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14 METAMERISM

Consider the “hex-basis”

h =



+1 +1 0 0 0 0
0 0 +1 +1 0 0
0 0 0 0 +1 +1

+1 −1 0 0 0 0
0 0 +1 −1 0 0
0 0 0 0 +1 −1

 . (S12)

The upper three rows represent the spectrum tripartition, the lower three rows split the
three basic components. The cutloci for the split of the RGB parts is done by way of
arc-length rectification of the edge–color curves. This refines the tripartition of white
into a hexapartition. At least, it is a good start. We proceed by orthogonalization. This
does not affect the original tripartition, whereas the lower three rows become a partial
basis for the black space (fig. S37). This is arguably the best way to approximate the
black space.

Metamers of E(λ) involve arbitrary amounts of the black components. In a limiting
case spectral radiance will fall to zero in at least one of the six parts. Such metameric
sources are not revealed by the white standard. Phenomenologically, they all provide
]white light. We prepare twenty-six (all triples of {−1, 0,+1}, except {0, 0, 0}, thus
33 − 1) of such fake standard sources.

Metamers of the flat central gray reflectance factor, involve arbitrary amounts of the
black components. In a limiting case the spectral reflectance will be zero or one in at
least one of the six parts. Such metameric reflectance factors are not revealed by the
standard source. Phenomenologically, they all are ]central gray. We prepare twenty-six
(33 − 1) of such fake standard gray objects.

Figure S37. These are the “black spectra” used in this section. They are essentially split
RGB regions. This set has been orthonormalized.
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Figure S38. Metameric gray colors. This is all about the gray at left under the standard
source. The colors at centre are due to spectral reflectances that would look gray under
the standard source. Here they are presented under sources under which a truly gray
object looks gray. Such sources are not your trusty E(λ). The combination of fake “gray
objects” and fake “white lights” yields a broad gamut of colors. Any of these might
change into any other one at the drop of a hat, if you juggle fake objects and sources. At
right the result for “ecologically valid” parameters. Notice the occasional “surprises” due
to the marked kurtosis (section 16 ).

Viewing all fake objects under all fake sources yields 676 (262) colors. Only 30 of
these lie on the convex hull, which is surprisingly large. It has a volume of 0.83 . . .. The
vertices of the convex hull are shown in figs. S38 and S39.

Figure S39. This is the convex hull of all colors that may be obtained from the hexa-
partition metamers of the equal energy source and the gray reflectances. It is by no means
a minor volume.

The metameric effects depends on correlation — or at least some nonlinear mechanism
— for purely linear processes will never reveal them. The multiplicative process in surface
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Figure S40. Here the three blacks of eq. (S12) and their negated versions are used to
prepare extreme sources and extreme reflectances. At left all sources are combined with
all reflectants. Notice that most of the action is on the diagonal. At right we show the
matrix of correlation coefficients of the metameric blacks and their negations (fig. S37).
Apparently, in order to have an effect, source spectra and reflectance spectra need to
correlate significantly.

scattering, followed by an averaging by retinal absorption, is just a kind of correlation
mechanism. Figure S40 has a demo.

When mixing stuffs characterized by canonical RGB spectra one obtains unique results.
One has a well defined map T2 7→ S1. Metamerism changes this essentially (fig. S41).

Figure S41. Mixtures of ]gray (RGB[50|50|50]) with ]gray (RGB[50|50|50]). Of course,
the expectation is ]gray (RGB[50|50|50]). That is because mixing some stuff with itself
is hardly going to change it! But, due to metamerism, not all ]grays have the canonical
spectral reflectance factor of RGB[50|50|50], a fact that remains hidden to the senses.
So multiplicative mixture may serve to distinguish identical ]grays as different stuffs.
In this example the source spectrum was E(λ) throughout. (At left the extreme colors
obtained by “mixing gray with gray.”) There are numerous grays that look the same, but
are different. This is an extreme example. Ecological factors greatly reduce surprises.
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The figure shows the worst case expectation for mixtures of gray with gray, observed
under the standard source E(λ). This is evidently an intuitively magical result: one starts
with two cans of paint that appear identically gray. When mixing them one obtains a
chromatic color! Any hue may be obtained in such a way.
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15 THE GRAININESS OF HUMAN PERCEPTION

Human perception is great, but — of course — the eye is far from being a
spectrophotometer. The literature cites discrimation data, apparently humans may
discriminate at least forty million colors!

Such numbers are useless for most application in image science. The more practical
value is roughly 200–2000, depending on the operationalization.

The confusion ellipsoids shown in fig. S42 are for color reproduction with a color
picker in s short-time memory condition.36 The fuzziness translates to roughly a 10%
fuzziness in the RGB coordinates, corresponding to about a thousand distinct colors.

36 J.J.Koenderink, A.J vanDoorn and K.Gegenfurtner (2018). Graininess of RGB–Display Space. i–Perception, 9(5), 1–46.

Figure S42. Empirical fuzziness of human perception.
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16 PROBABILITY DISTRIBUTIONS OF COLORIMETRIC
COORDINATES

The colorimetric coordinates are linearly related to the product of a spectral irradiance
and a spectral reflectance factor. Thus we need to be able to deal with the statistics of
products of variables. These variables may be variously distributed, here we consider
uniform and normal distributions.

Spectral irradiances are non-negative quantities. In practice, they tend to be normalized
by letting the unit albedo surface yield a reference.

Spectral reflectance factors are constrained to the unit interval.

For minor variations one may model distributions as normal variates, for major
variations the physical constraints come into play. Thus the distributions one needs
to deal with range from uniform distributions on finite intervals to normal distributions
on — for all practical purposes — infinite intervals.

We cover the important cases here by regarding products of samples from uniform
distributions on finite intervals and products of samples from normal distributions on the
real line.

16.1 Uniform distributions on the unit interval

The probability distribution function of the product of two uniform variates on the unit
interval is (fig. S43 left)

P (x) = − log |x|
2

, (S13)

where one has P (0) =∞ and
∫ +1
−1 P (x) dx = 1. The moments are

mk =
1 + (−1)k

2(1 + k)2
, (S14)

thus the variance is 1/9, the standard deviation 1/3. The excess kurtosis is

m4

m2
2

− 3 = 0.24, (S15)

thus the distribution is somewhat heavy-tailed.

The cumulative distribution function is (fig. S43 right)

C(x) =
1

2
(1 + x− x log(|x|)) , (S16)
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Figure S43. At left the probability density function for the product of two variates from
the uniform distribution on the unit interval. At right the cumulative distribution. It has
an infinite derivative at the origin, as the PDF has an infinite peak.

which can be inverted to find the quantile function

Q(x) =
1− 2x

W−1(− |2x−1|e )
(S17)

(W−1 the product-log function).

Thus the interquartile range is −2(W−1(−1/(2e)))−1 ≈ 0.7467 . . ., only somewhat
larger than twice the standard variation (2/3 ≈ 0.6667 . . .).

16.2 Normal distributions of unit variance and zero mean

The probability distribution function of the product of two uniform variates of unit
variance is (fig. S44 left)

P (x) =
K0(|x|)
π

, (S18)

(Kn a modified Bessel function of the second kind) where one has P (0) = ∞ and∫ +1
−1 P (x) dx = 1. The moments are

mk =
2−1+k(1 + (−1)k)Γ(1+k2 )2

π
, (S19)

thus the variance is 1 and so is the standard deviation. The excess kurtosis (as in eq. (S15))
is 6 thus the distribution is rather heavy-tailed.

The cumulative distribution function is (Ln the modified Struve function, fig. S44 right):

C(x) =
1

2
(1 + x (L−1(x)K0(|x|) + L0(|x|)K1(|x|))) . (S20)
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Figure S44. At left the probability density function for the product of two variates from
the central, normal distribution of unit variance. At right the cumulative distribution. It
has an infinite derivative at the origin, as the PDF has an infinite peak.

We have not been able to invert the cumulative distribution function, so we only have
the quantile function in numerical approximation. The interquartile range turns out to be
0.7303 . . ., quite a bit smaller than twice standard deviation (2). The quantile-quantile
plot (“QQ–plot”) illustrates the kurtotic nature of the distribution (fig. S45).

Adding multiple samplings again moves the distribution closer to normality. For
instance the sum of two samples follows a Laplace distribution, thus halving the excess
kurtosis. The distribution of the sum of n samples is

Pn(x) =
2

1−n
2 |x| 1−n2 K 1−n

2
(|x|)

√
πΓ(n2 )

. (S21)

The moments of order m are

m(n,m) =
2m−1 (1 + (−1)m) Γ(1+m2 )Γ(n+m2 )

√
πΓ(n2 )

, (S22)

from which one sees that m(∞, 4)/m(∞, 2)2 − 3 = 0, thus the kurtosis approaches
that for a normal distribution. Indeed, for the sum of two samples the excess kurtosis is
already cut by half (the Laplace distribution) and for the sum of six samples the excess
kurtosis is down to 1. (Figure S46.)
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Figure S45. This is a QQ-Plot of the distribution shown in the previous figure. It is
apparently quite kurtotic. Indeed, the kurtotic excess equals six.

Figure S46. Distributions of various sums of products of normal variates. As the number
of summands grows, the distribution tends to normality. For a number of three one obtains
the Laplace distribution.
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17 PREPONDERANCE OF TEAL-ORANGE OVER PURPLE-GREEN

A frequently encountered covariance structure for the RGB–coordinates in photographs

of natural scenes is C =

(
1 1−ξ 1−2ξ

1−ξ 1 1−ξ
1−2ξ 1−ξ 1

)
with ξ ≈ 0.1 (see also section 12). This has

the effect that one is more likely to encounter a color in the teal-orange family than one
in the purple-green family. The ratio of teal-orange to purple-green colors tends to 3
when color coordinates are drawn from such a multivariate normal distribution.

Another way to approach the issue is through the analysis of databases of spectral
reflectances. This often yields even larger ratios.

We present an example in fig. S47. This database contains over seven-hundred items.
The database contains a large variety of pigments both organic and anorganic, primarily
intended as artist’s colors. It is representative of many of a large variety of spectral
databases we have investigated.

After deleting essentially achromatic items (color content less than 10%) we are left
with 455 items. For this database the teal-orange family is 7.8 times more abundant than

Figure S47. At left the chromaticities of samples of the “Kremer data base,” a large data
base of pigments, mainly aimed at the visual arts (data from the laboratory of the third
author). The samples were sorted with respect to achromatic content, so occlusions yield
something of a third dimension. Note that most chromatic contents are not very large.
Note also that the distribution is far from isotropic (histogram at right). The teal-and-
orange family hugely dominates the purple-green family, with orange far in the lead. This
general pattern is evident in all date bases we analyzed. The causes are partly generic
physics, partly ecological.
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the purple-green family. Oranges are 6.3 times more abundant than teals, greens 1.3
times more abundant than purples. This appears to be fairly generic. 37

That the oranges are far more abundant than the teals is due to the fact that the average
spectral slope is not zero. This is the case for all data bases of “natural” reflectance
factors that we have been able to study. This effect is also very marked in the statistics of
pixel values in images of natural scenes. Thus far, we have not found a fitting argument
from fundamental physics, it may be due to the chemical constitution of ecologically
abundant biological materials and minerals.38

The same analysis can be performed on a database that only contains colors, not
spectral reflectance factors. And example is the Resene database of paint colors. Resene
Paints Limited, New Zealand’s largest privately-owned and operated paint manufacturing
company, has generously made their ”Resene RGB Values List” available to the public.
The database contains 1383 colors. Again, we see (fig. S48) the strong preference for
teal–orange as compared to purple-green (factor 3.2), with orange in the lead over teal
(factor 2.5).

Figure S48. The same statistics as in figure S47 for the Resene database of paint colors.

This suggests that one might just as well use RGB images as databases. We show an
example for a photograph of a tundra landscape (fig. S49). It has the right ecology for
early man living in current Europe. This image contains 13 996 800 pixels, so it is a huge
database.

37 See: J.J.Koenderink and A.J.van Doorn (2020). Orange & Teal. Art & Perception, in press.
38 See: J.J.Koenderink and A.J.van Doorn (2017). Colors of the sublunar. i-Perception, 8(5).
and
J.J.Koenderink, A.J. van Doorn and K.Gegenfurtner (2020). Colors and things. i-Perception 11(5), 1–43.
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Figure S49. The same statistics as in figure S47 for the pixels of the Tundra image
(Nunavut tundra, 7 September 2011, 15:56:18, author A.Dalia, https://en.
wikipedia.org/wiki/Canadian_Arctic_tundra).

The correlation matrix is  1 0.93 0.86
0.93 1 0.93
0.86 0.93 1

 , (S23)

which is just the pattern mentioned earlier. Apparently ξ ≈ 0.07. One finds this structure
again and again. It is apparently not due to the particular instance, but it must be an
ecological invariant.

For the distribution of hues we find a similar pattern. Teal-orange wins from purple–
green by a factor of 10.4. Orange beats teal by a factor of 9.9. That these factors are
extreme as compared to the previous cases may be due the the preponderance of organic
materials, whereas the two previous databases were due to mineral pigments and some
artificial chemical compounds.

From these observations we draw an important conclusion:

1. The abundancies of the families of reflectance spectra teal (short pass), orange (long
pass), green (band pass) and purple (band stop) can be estimated from RGB images.
It is not necessary to use hyperspectral images;

2. These abundancies hardly depend upon the particular instance. They conform to
a fundamental ecological invariant that applies to daytime scenes of the natural
environment. It is found both for mineral and for organic materials;

3. The fact that the invariance pertains to a very diverse set of materials implies that it
has to be due to a general constraint on the ecological optics;

4. The overwhelming abundancy oft teal–oranges means that most spectral relectances
are shortpass or long pass, whereas bandpass or bandstop spectra are rare;
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5. The fact that spectral slope is far more important than spectral curvature implies that
the correlation length of the spectral envelope of spectral reflectance factors is at
least two times (probably more) longer than the width of the visual range (about
200nm). It is in the range 400–1000nm.

These are strong conclusions from an essentially simple observation.

We can draw such conclusions due to an understanding of the relation between object
colors and spectral reflectance functions (material properties). It reveals some of the
power of our account of colorimetry presented in the article.

An alternative — perhaps more intuitive – way to put it is to say that RGB colors are
nothing but coarse-grained spectral reflectance factors. Naturally, such a statement needs
considerable unpacking — as provided in the article.
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