Supplementary Material: Assessing Raspberry Shake and Boom sensors for recording African Elephant acoustic vocalisations

Oliver D. Lamb¹, Michael J. Shore¹, Jonathan M. Lees¹, Stephen J. Lee², and Sean Hensman³

¹Department of Geological Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA;

²US Army Research Laboratory/Army Research Office, Research Triangle Park, NC, USA;

³Adventures with Elephants, Bela Bela, South Africa

CONTENTS

Figure S1: Examples of noise recorded by the Raspberry Shake and Boom units and other stations during the deployment.

Figures S2 - S13: Spectrograms from data recorded by seismic and acoustic sensors during each reunion event (labeled by R1, R2, R3, etc. at top of each figure). To see in which reunions vocalisations were or were not detected in both acoustic and seismic sensors, please see Tables S3 and S4.

Tables S1 and S2: Specifications of the sensors used in the experiment.

Tables S3 and S4: Detections results for each sensor during the experiment.

Figure S1. Examples of noise recorded by Raspberry Shake and Boom units and other stations during the deployment. Seismic waves from regional mining blast as recorded by (a) the RS&B geophone and (b) the Lennartz seismometer (note the noise from an unknown source has interfered with the waveform, as labeled in the spectrogram). Acoustic waves from a helicopter or small aircraft doing a flyby, as recorded by (c) the RS&B acoustic sensor, and (d) a InfraBSU sensor. Acoustic noise generated by wind, as recorded by (e) the RS&B acoustic sensor, and (f) the InfraBSU sensor. Each example includes the recorded waveform (top panel) and the frequency spectrogram (bottom panel). The station names of each sensor are indicated in the brackets in the bottom left of each spectrogram; see Fig. **??**C for the location of each station. The peak absolute amplitude measured is noted in the top right of each waveform panel.

Figure S2. Spectrograms for seismic data as recorded during Reunion 1, plotted in order of distance of station from the event. Station names are labeled in top left of each panel. Details on the sensor, distance from reunion, and bearing from reunion location to station are labeled by the right side of each panel. Atmospheric temperature and wind conditions are stated at top of figure. Note that data from stations P5, P7, and P9 are not plotted here due to technical issues with the stations.

Figure S3. Spectrograms for acoustic data as recorded during Reunion 1, plotted in order of distance of station from the event. Station names are labeled in top left of each panel. Details on the sensor, distance from reunion, and bearing from reunion location to station are labeled by the right side of each panel. Atmospheric temperature and wind conditions are stated at top of figure. Note that data from stations P5, P7, and P9 are not plotted here due to technical issues with the stations.

Figure S4. Spectrograms for seismic data as recorded during Reunion 2, plotted in order of distance of station from the event. Station names are labeled in top left of each panel. Details on the sensor, distance from reunion, and bearing from reunion location to station are labeled by the right side of each panel. Atmospheric temperature and wind conditions are stated at top of figure.

R2 Temp: 33.0°C - Wind Vel.: 3.5 m/s - Wind bear.: 322*

Figure S5. Spectrograms for acoustic data as recorded during Reunion 2, plotted in order of distance of station from the event. Station names are labeled in top left of each panel. Details on the sensor, distance from reunion, and bearing from reunion location to station are labeled by the right side of each panel. Atmospheric temperature and wind conditions are stated at top of figure.

Figure S6. Spectrograms for seismic data as recorded during Reunion 3, plotted in order of distance of station from the event. Station names are labeled in top left of each panel. Details on the sensor, distance from reunion, and bearing from reunion location to station are labeled by the right side of each panel. Atmospheric temperature and wind conditions are stated at top of figure.

R3 Temp: 33.4°C - Wind Vel.: 3.9 m/s - Wind bear.: 293°

Figure S7. Spectrograms for acoustic data as recorded during Reunion 3, plotted in order of distance of station from the event. Station names are labeled in top left of each panel. Details on the sensor, distance from reunion, and bearing from reunion location to station are labeled by the right side of each panel. Atmospheric temperature and wind conditions are stated at top of figure.

Figure S8. Spectrograms for seismic data as recorded during Reunion 4, plotted in order of distance of station from the event. Station names are labeled in top left of each panel. Details on the sensor, distance from reunion, and bearing from reunion location to station are labeled by the right side of each panel. Atmospheric temperature and wind conditions are stated at top of figure.

R4 Temp: 32.8°C - Wind Vel.: 1.2 m/s - Wind bear.: 258"

Figure S9. Spectrograms for acoustic data as recorded during Reunion 4, plotted in order of distance of station from the event. Station names are labeled in top left of each panel. Details on the sensor, distance from reunion, and bearing from reunion location to station are labeled by the right side of each panel. Atmospheric temperature and wind conditions are stated at top of figure.

Figure S10. Spectrograms for seismic data as recorded during Reunion 5, plotted in order of distance of station from the event. Station names are labeled in top left of each panel. Details on the sensor, distance from reunion, and bearing from reunion location to station are labeled by the right side of each panel. Atmospheric temperature and wind conditions are stated at top of figure.

R5 Temp: 22.2°C - Wind Vel.: 3.1 m/s - Wind bear.: 30°

Figure S11. Spectrograms for acoustic data as recorded during Reunion 5, plotted in order of distance of station from the event. Station names are labeled in top left of each panel. Details on the sensor, distance from reunion, and bearing from reunion location to station are labeled by the right side of each panel. Atmospheric temperature and wind conditions are stated at top of figure. Note that station P1 is not plotted due to technical issues with the microphone.

Figure S12. Spectrograms for seismic data as recorded during Reunion 6, plotted in order of distance of station from the event. Station names are labeled in top left of each panel. Details on the sensor, distance from reunion, and bearing from reunion location to station are labeled by the right side of each panel. Atmospheric temperature and wind conditions are stated at top of figure.

R6 Temp: 23.8°C - Wind Vel.: 2.4 m/s - Wind bear.: 16°

Figure S13. Spectrograms for acoustic data as recorded during Reunion 6, plotted in order of distance of station from the event. Station names are labeled in top left of each panel. Details on the sensor, distance from reunion, and bearing from reunion location to station are labeled by the right side of each panel. Atmospheric temperature and wind conditions are stated at top of figure. Note that station P1 is not plotted due to technical issues with the microphone.

1 TABLES

1.1 Sensor specifications

Table S1. Specifications of the Raspberry Shake and Boom unit and the sensors within.

Unit					
Parameter	Value				
Dimensions	110x100x65 mm				
Weight (approx.)	0.4 kg				
Operating temperature	0 - 60 °C (Limited by On Board Computer)				
On Board Computer	Wifi-enabled Raspberry Pi 3 Model B				
Maximum recording	100 samples per second				
rate					
Storage device	8 Gb micro SD card				
Timing	Network Timing Protocol, NTP (default), GPS timing				
	supported				
Power supply voltage	5 V DC (2.5 A supply)				
Power consumption	Startup: 3.1 W; Run-time: 1.9 W				
Cost per unit (2020)	\$864.99				
Microphone					
Parameter Value					
Туре	Differential pressure transducer				
Bandwidth (estimate)	-3 dB points at 1 - 44 Hz				
Clip level (estimate)	±120 Pa				
Geophone					
Parameter	Value				
Туре	Single component 4.5 Hz Ohm vertical Racotech RGI-20DX				
	geophone with electronic extension to <1 Hz				
Bandwidth (estimate)	-3 dB points at 0.7 - 44 Hz				
Clip level (estimate)	21 mm/s peak-to-peak at 0.1 - 44 Hz				
Sensitivity (estimate)	3.9965e8 counts/m/s				

Table S2. Specifications of the comparison sensors.

Datacube data recorder					
Parameter	Value				
Dimensions	100x100x83 mm				
Weight	0.85 kg				
Operating temperature	-20 - 70 °C				
Recording rate	50, 100, 200, or 400 samples per second				
Storage type	32 Gb SDHC internal memory card				
Timing	GPS synchronized free running internal quartz				
Power supply voltage	5 - 24 V				
Power consumption	120 mW				
Cost per unit (2019)	\$1,250.00				
<i>Lennartz vertical component seismometer</i>					
Parameter	Value				
Туре	Force balance seismometer				
Dimensions	85 mm diameter, 55 mm height				
Weight (approx.)	1.1 kg				
Bandwidth	- 3 dB at 0.1 - 100 Hz				
Clip level	$\pm 7 \text{ V}$				
Cost per unit (2019)	\$1,930,00				
	RT Clark 4.5 Hz vertical geophone				
Parameter	Value				
Туре	Single component 4.5 Hz vertical geophone				
Dimensions	25.4 mm diameter, 33.3 mm height				
Weight (approx.)	0.089 kg				
Sensitivity	23.4 V/m/s				
Cost per unit (2019)	\$79.00				
InfraBSU 131 infrasound logger					
Parameter	Value				
Туре	Differential pressure transducer				
Dimensions	50 mm diameter, 70 mm height				
High-pass corner	0.16 - 0.48 Hz				
Clip level	±125 Pa				
Cost per unit (2019)	\$400.00				
Chaparral infrasound sensor					
Parameter	Value				
Туре	Differential pressure transducer				
Dimensions	95 mm diameter, 43 mm height				
Bandwidth	-1 dB points at 0.06 - 200 Hz				
Clip level	22 V peak-to-peak, ± 11 V max, signal to ground				
Cost per unit (2019)	\$3,250.00				

1.2 Detection results tables

The frequency spectrograms that were used to assess if a reunion was detected are provided in the supplementary materials. Note: Entries marked with * indicate data was not recorded due to technical issues with sensor during the reunion event.

Station	Instrument	Reunions					
		R 1	R2	R3	R4	R5	R6
RN	R-boom	X	Х	X	X	X	\checkmark
RS	R-boom	X	X	X	X	X	X
P1	Chaparral	X	Х	\checkmark	X	X*	X*
P3	InfraBSU	X	\checkmark	\checkmark	X	\checkmark	\checkmark
CW	InfraBSU	X	X	X	X	X	\checkmark
P5	R-boom	X*	\checkmark	X	X	X	X
P7	R-boom	X*	Х	X	X	X	X
P9	R-boom	X*	X	X	X	X	X

Table S3. Detections of reunion events by acoustic sensors.

Table S4. Detections of reunion events by seismic sensors.

Station	Instrument	Reunions						
		R1	R2	R3	R4	R5	R6	
RN	R-shake	X	X	X	X	\checkmark	\checkmark	
RS	R-shake	X	Х	X	X	Х	\checkmark	
P1	Lennhartz	\checkmark	X	\checkmark	X	X	\checkmark	
P3	Geophone	X	\checkmark	\checkmark	X	X	\checkmark	
CW	Geophone	X	X	X	X	X	X	
P5	R-shake	X*	\checkmark	X	X	Х	Х	
P7	R-shake	X*	X	X	X	X	X	
P9	R-shake	X*	X	X	X	X	X	