Shelf life model					
Mathematical equation used for shelf life	Mathematical equation used for transfer through	Consumers acceptability	Products	References	
determination	food packaging system		studied		
$\frac{dq}{q^n} = -\sum_{i} (k_i \Delta t_i)_{T_i}$	None	No	Variety peaches	Aiello et aL 2012	
$k = k_0 e^{\frac{E_a}{RT}}$			"elegant lady"		
<i>q</i> : quality; <i>n</i> : reaction order of the phenomenon					
controlling the deterioration of the food; k_i : rate					
constant; Δt_i : time interval; T_i : interval					
temperature; k_0 : constant ; E_a : activation					
energy ; R: gas constant; T: temperature.					
$t_{s} = t_{lag} + \frac{1}{\mu_{max}} \ln(\frac{N_{c}}{N_{0}})$ $\sqrt{\frac{1}{t_{lag}}} = b_{lag} \cdot (T - T_{lag,min})$ $\sqrt{\frac{1}{\mu_{max}}} = b_{\mu} \cdot (T - T_{\mu,min})$ $\log N = \log N_{0} + \frac{\mu_{max}}{\ln(10)} \cdot A - \frac{1}{\ln(10)} \cdot \ln(1 + \frac{e^{\mu_{max}A} - 1}{10^{(\log N_{max} - \log N_{0})}})$ $A = t + \frac{1}{\mu_{max}} \cdot \ln \frac{e^{-\mu_{max}t} + \frac{1}{e^{t_{lag}\mu_{max}} - 1}}{1 + \frac{1}{e^{t_{lag}\mu_{max}} - 1}}$ $t_{s} : \text{ shelf life (days); } t_{lag} : \text{ lag time (days); } \mu_{max} :$ maximum specific growth (days ⁻¹); N_{c} microbial count (CFU/g); N_{max} : maximal microbial count (CFU/g); T :	None	No	Ready to eat product: combination of braised green peppers and dry anchovies	Lee et al 2008	
temperature (⁻ C); b_{lag} and b_{μ} : slope parameters;					
$I_{lag,min}$ and $I_{\mu,min}$. Infinitial temperature (C).	None	No	Minced park	Koutsoumania	
$y(t) = y_0 + \mu_{max}A(t) - \frac{1}{m}\ln(1)$	None	NO	meat	et al 2008	
$e^{m_{\mu_{max}}A(t)}-1$				2000	
$+ \frac{1}{e^{m(y_{max}-y_0)}})$					
$A(t) = t + \frac{1}{\mu_{max}} \ln(e^{-\mu_{max}t} + e^{h_0} + e^{-\mu_{max}t - h_0})$					
$\ln(\mu_{max}) = \ln(\mu_{ref}) - \frac{E_A}{R} \times (\frac{1}{T} - \frac{1}{T_{ref}})$					

y and y_0 : logarithm of the microbial cell				
concentration and initial microbial cell				
concentration (log CFU/g) at time t (h); μ_{max} :				
maximum specific growth rate (h^{-1}); <i>m</i> : curvature				
parameter; A: delayed time variable (h); h_0 :				
constant parameter; T: temperature (K); μ_{ref} :				
specific growth rate (h ⁻¹) at reference temperature				
T_{ref} (K); E_A : activation energy (kJ.mol ⁻¹); R: gas law				
constant (kJ.mol ⁻¹ .K ⁻¹)				
$\frac{\mu_{max}}{\gamma_0}(\delta-t)+1$	None	No	Bakery	Guynot et al
$y(t) = y_0 e^{-t}$			product	2003
$\delta = b_0 + b_1 a_w + b_2 C O_2 + b_{12} a_w C O_2 + b_{11} a_w^2$				
$+ b_{22}CO_2^2$				
y and y_0 : microbial cell concentration at time				
t and initial time; μ_{max} : maximum specific growth				
rate; δ : lag phase, that was dependent of pH and				
CO_2 concentration; b_0 , b_1 , b_2 , b_{12} , b_{11} , b_{22} :				
coefficient term.				
$SL = \beta_0 + \beta_1 \times pH + \beta_2 \times SSC + \beta_3 \times (S.Eval)$	None	No	Apple Golden	Putnik et al
$+ \beta_4 \times (\Delta E) + \beta_5$			Delicious and	2017
\times (no treatment) + $\beta_6 \times$ (Ca			Cripps Pink	
$-$ citric acid) + $\beta_7 \times$ (ascorbic				
+ citric acid) + $\beta_8 \times (USND)$				
$+ Ca - ascorbate) + \beta_9$				
\times (USND + ascorbic				
+ citric acid) + β_{10}				
\times (Golden Delicious) + β_{11}				
× (Cripps Pink) + error				
SL : Shelf life; eta_0 to eta_{11} being fitting parameters				
(dimensionless); SSC: Soluble Solids and ΔE : color				
measurement				
$SL_{MAX} = \alpha_0 + \alpha_1 \times \log(Ebac) + error$				
SL_{MAX} : Shelf life according to bacterial				
development (days); α_0 and α_1 : estimated				
parameters; <i>Ebac</i> : enumeration of bacteria				
growth (CFU.g ⁻¹)				
$(CDU) = W + A + -e^{(\mu max \times 2.7182 \times \frac{LDP-t}{A})+1}$	None	No	Minced beef	Limbo et al
$\log(CFU) = K + A \times e^{-C}$			meat	2010
$\frac{1}{LDP} = Ze \frac{-ELDP}{RT}$				
$LDP -E_{\mu}$				
$\mu = A' e^{\frac{\mu}{RT}}$				
<i>K</i> : initial level of bacterial count (log CFU.g ⁻¹); <i>A</i> :				
increase of the population (log (CFU.g ⁻¹)); μ_{max} :				

maximal growth rate (Δlog(CFU.g ⁻¹).day ⁻¹); <i>LDP</i> : lag				
phase duration (days); t: the storage time (days);				
Z and A' : pre-exponential factor (days ⁻¹ and				
log(CFU.g ⁻¹).days ⁻¹); <i>T</i> temperature (K); <i>E</i> _{LDP} :				
activation energy (kJ.mol ⁻¹); R: gas law constant				
(J.K ⁻¹ .mol ⁻¹);				
$t_s = \frac{d^2 C O_2}{dt^2} = \frac{d^2 P C 1}{dt^2} = \frac{d^2 H u e}{dt^2} = t_0 e^{-bT}$ for narrow				
temperature range				
t_s and t_0 : estimated stability time (days) at				
temperature T and temperature 0°C; b: slope of				
regression line; PC1: component analysis; Hue:				
hue index measured through color L (lightness), a				
(redness) and b (yellowness).				
$P(R_t) = 1 - e^{-e^{\frac{\ln(t) - \mu}{\sigma}}}$	None	Question asked to consumers: "If this salad was in your	Fresh-cut Iceberg salad	Manzocco et al 2017
$P(C_t) = \frac{(t+n-1)!}{(1-n)^n n^t}$		refrigerator, would you consume it,	U	
(n-1)! t! (1-p) p		or would you throw it away?"		
$P(R_t)$: probability of the food to be rejected by		The limit of acceptability		
consumers at time <i>t</i> , which was used to estimate		represents the time at which 25%		
shelf life; μ and σ : intercept and scale parameters;		of consumers rejected the product.		
$P(C_t)$: probability of the food to be consumed by				
consumers at time <i>t; n</i> and p: size and probe				
parameters.				
$X = X_0 e^{\kappa_T t}$	None	Question asked to consumers:	Butterhead	Lareo et al
$k_{-} - k_{-} e^{-\frac{L_A}{R}(\frac{1}{T} - \frac{1}{T_{ref}})}$		"Would normally buy and consume	lettuce	2009
$\kappa_T = \kappa_{ref}$		the samples?". The rejection		
Λ : sensory quality parameter, Λ_0 . Initial sensory		function $S(t)$ is defined as the		
$(d_{2})(c^{-1})$ that is dependent of temperature $T_{c}(K)$:		probability of a consumer rejecting		
$k \rightarrow reaction rate constant (days-1) at reference$		a product before time t.		
temperature T_{ref} (K); E_A : activation energy		$\mu_{T_{ref}} - \frac{E_A}{R} \left(\frac{1}{T} - \frac{1}{T_{ref}}\right)$ $S(t) = S_{cev} \left(\frac{1}{T_{ref}} - \frac{E_A}{R}\right)$		
(Kcal.mol ²); R: gas law constant (Kcal.mol ² .K ²)		σ		
		S _{sev} . Survival function of the		
		distribution. The terror protocol		
		(K), (i) is a parameter of reference		
		(N), $\mu_{T_{ref}}$: parameter at reference		
		temperature T_{ref} (K); E_A :		
		activation energy (kcal.mol ⁻¹); R:		
		gas law constant (kcal.mol ⁻¹ .K ⁻¹).		
		The limit of acceptability tested		
		was 25% and 50%.		

$F(t) = e^{-(\frac{t}{\alpha})^{\beta}}$	None	Question asked to consumers:	Raspberries	Adobeti et al
$F(t) = e^{-\alpha}$		"Imagine you are in a supermarket		2015
and shape constant parameters of distribution		to buy raspberries, would you buy		
(dimensionless)		this tray?"		
(annensioness)		The limit of acceptability		
		represents the time at which 50%		
		of consumers rejected the product.		
Microbial growth: $\frac{dx(t)}{dt} = a(t) \times \frac{1-x(t)}{dt} \times x(t)$	None	Amount of money the consumers	Deli salads	Skjerdal et al
$dt \qquad x_{max}$		was willing to pay for their		2017
$a(t) = \frac{q(t)}{1 + q(t)}$		preferred alternative compared to		
1 + q(t)		the standard alternative was used		
$q(t) = q_0 \times e^{t - max}$		to set limits for acceptable and		
$\ln(1+\frac{1}{a_0})$		unacceptable costs for deli salads.		
$\lambda = \frac{q_0}{\mu}$				
$\mu_{max} = \mu_{out} \times Y(T) \times Y(nH)$				
Y(T) = (M, (T) and Y(nH) = (M, (nH))				
$(x - x_{max}) \times (x - x_{min})^n$				
$CM_n(x) = \frac{(x - x_{max})^{n-1}}{(x - x_{max})^{n-1}} \times (x_{opt})^{n-1}$				
(x_{opt}, x_{min}) - (x_{opt}, x_{min})				
- x $((n - 1)x + x)$				
$= x_{max})((n - 1)x_{opt} + x_{min})$				
r : number of cells (CELL σ^{-1}): X : maximum				
nonulation density (CEU g^{-1}): μ : maximum				
growth rate (h^{-1}): λ : lag period: $a(t)$ and a_{α} :				
physiological state of the cell at time t (h) and				
initial time.				
Ascorbic acid degradation: $C = C_{\infty}(1 - e^{kt})$				
C and C_{∞} : concentration of ascorbic acid at time t				
and equilibrium; k: kinetic constant.				
$SL = \beta_0 + \beta_1 \times L + \beta_2 \times a + \beta_3 \times b + \beta_4 \times SL$	kP_{0_2} $(y_{0_2}^{out} - y_{0_2}^{in})$ V_f dy_{0_2}	No	Apple Golden	Putnik et al
$+\beta_5 \times R_{O_2} + \beta_6 \times R_{CO_2} + \beta_7$	$P = \frac{x^2}{x} \times A \times \frac{100}{100} - \frac{100}{100} \times \frac{1}{dt}$		Delicious and	2017
$\times R_{CO_2} + \beta_8$	$M_{O_2} =$		Cripps Pink	
\times (Golden Delicious) + β_9				
\times (Cripps Pink) + β_{10}	$\frac{V_f}{V_f} \times \frac{dy_{CO_2}}{dy_{CO_2}} - \frac{kP_{CO_2}}{kP_{CO_2}} \times 4 \times \frac{(y_{CO_2}^{out} - y_{CO_2}^{in})}{kP_{CO_2}}$			
\times (no treatment) + β_{11}	$R_{cor} = \frac{100^{\circ} dt}{dt} \frac{x}{x} \frac{100^{\circ}}{100}$			
\times (ascorbic + citric acid)	M			
$+ \beta_{12} \times (Ca - ascorbate)$	M M			
$+ \beta_{13} \times (USND + Ca)$	Where $V_f = V_{total} - \frac{1}{M_{\rho}}$			
$-$ ascorbate $) + \beta_{14} \times (USND)$	And $A = lenght \times width$			
+ ascorbic + citric acid)	R: respiration rate (cm ³ .kg ⁻¹ .day ⁻¹ .atm ⁻¹); $\frac{kP}{m}$ =P: permeance			
+ error	(cm ³ .m ⁻² .day ⁻¹ .atm ⁻¹); A: packaging surface area (m ²); M:			

β_0 to β_{14} being fitting parameters (dimensionless);	apple cultivar packaged mass (kg); x: film thickness (cm); y:			
ΔE : color measurement (dimensionless); L, a and	volumetric concentration (% v/v O_2 and CO_2); M_p : fresh-cut			
b: CIE LAP parameters; SL: Shelf Life; R_{02} :	apple density; V _{total} : total volume inside the packaging			
Respiration rate represented in O ₂ consumption	(cm ³); V _f : free volume inside the packaging.			
(cm ³ .kg ⁻¹ .day ⁻¹ .atm ⁻¹); R _{CO2} : Respiration rate				
represented in CO ₂ production (cm ³ .kg ⁻¹ .day ⁻¹ .atm ⁻				
1)				
Weight loss : $\frac{dW_l}{dt} = t_r + M_c r_{CO_2} W_s$	$\frac{d[O_2]_i}{dt} = 100 \times \frac{P_{O_2}A_p P_{atm}}{V} \left(\frac{[O_2]_0}{100} - \frac{[O_2]_i}{100} - W_p r_{O_2} \right) \times \frac{1}{V}$	No	Strawberries	Joshi et al
$t_r = m_w A_c = VPD \times K_t \times A_c$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			2019
$= (a_w - RH)p_s \times \frac{1}{1 + 1} \times A_c$	$\frac{u_{1}^{(c} O_{2})_{i}}{dt} = 100 \times \frac{r_{CO_{2}} R_{p} r_{atm}}{L_{f}} \left(\frac{(cO_{2})_{i}}{100} - \frac{(cO_{2})_{i}}{100} - W_{p} r_{CO_{2}}\right) \times \frac{1}{V_{f}}$			
$\overline{K_s} + \overline{K_a}$	$v = Vm_{0_2} \cdot [0_2]$			
W_l : weight loss; t_r : amount of water vapor transpired from the surface of fruit (kg.m ⁻² .h ⁻¹): M_r :	$V_{O_2} = \frac{1}{Km_{O_2}} \cdot \left(1 + \frac{[CO_2]}{Kmc_{CO_2}}\right) + [O_2] \cdot \left(1 + \frac{[CO_2]}{Kmu_{CO_2}}\right)$			
carbon loss due to respiration $r_{CO_{2}}$; m_{w} : water	$Vm_{CO_2(f)}$			
vapor flux (kg.h ⁻¹); A_c : surface area of the	$I_{CO_2} = RQ_{ox} \cdot I_{O_2} + \frac{[O_2]}{\left(1 + \frac{[O_2]}{Km_{CO_2}(f)} + \frac{[CO_2]}{Km_{CO_2}(f)}\right) \cdot Km_{CO_2(f)} + 1}$			
commodity (m ²); <i>VPD</i> : vapor pressure deficit (Pa);	$dm_{pr} = P_i - P_0 (0.018P_{atm})$			
K_t : transpiration coefficient (kg.m ⁻² .s ⁻¹ .Pa ⁻¹); a_w :	$\frac{1}{dt} = P_{H_2O}A_p(\frac{1}{L_f})(\frac{1}{RT_s})$			
water activity of fresh produce; <i>RH</i> : relative	$\pi R_h^2 \times D_{i,air}$			
number (P_2) : K : Skip mass transfer coefficient (kg	$P = P_{ref} + \frac{1}{L_f + R_h} \times N_h$			
m^{-2} s ⁻¹ Pa ⁻¹): K : air-film mass transfer coefficient	$[CO_2]_i$ and $[CO_2]_i$: concentration of oxygen and dioxygen			
$(kg m^{-2} s^{-1} Pa^{-1})$	gases (%) in the package at time t (s); $[O_2]_0$ and $[CO_2]_0$:			
Spoilage: $\frac{dN}{dN} = Ral \times k \times N \times (\frac{Nmax-N}{N})$	concentration of oxygen and dioxygen gases outside (%); P			
Sponage: $\frac{dt}{dt} = \frac{Ret_{MR}}{R} \times R_s \times N \times \left(\frac{N_{max}}{N_{max}} \right)$	and P_{ref} : film permeability and reference permeability of			
$Rel_{1} = \frac{r_{CO_2(f)}([O_2], [CO_2], [H_2O], T_s)}{1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +$	film (mL.m ⁻¹ .h ⁻¹ .atm ⁻¹); A_p : total surface area of package			
$r_{CO_2}(21\%O_2, 0.03\%CO_2, T_s)$	(m ²); P_{atm} : atmospheric pressure (Pa); L_f : thickness of			
N: spoilage at time t ; N_{max} : maximum	packaging film (m); W_p : weight of product (kg); V_f : free			
spoilage; k_s : spoilage rate; Rel_{MR} : metabolic rate;	volume in headspace (mL); r_{O_2} and r_{CO_2} : oxygen			
r_{CO_2} : respiration rate	consumption rate and dioxygen production rate (mol.kg ⁻¹ .s ⁻¹			
	¹); Vm : maximum evolution rate (mol.kg ⁻¹ .h ⁻¹); Km :			
	Michaelis-Menten constant (%); <i>Kmc</i> : Michealis-Menten			
	constant for non-competitive inhibition (% or kPa); Kmu:			
	Wichealis-Wienten constant for non-competitive inhibition			
	(% or kPa); RQ : respiratory quotient; P_i and P_0 : partial processing values inside and outside package (Pa): T :			
	temperature of produce surface (K): $R_{\rm s}$: radius of			
	nerforation (m): D_{total} diffusion coefficient in air (m ² s ⁻¹):			
	$N_{\rm h}$: number of perforations.			
$\frac{dN}{dN} = \mu$ $N_{t}(1 - \frac{N_{t}}{N_{t}})$ for $t > lag and \frac{dN}{dN} = 0$	$dC_{iHS} = dV_{HS}$	Νο	Processed	Chaix et al
$\frac{dt}{dt} = \mu_{max} \eta_t (1 - \eta_{max}) \eta_t (1 -$	$V_{HS} - \frac{g_{j,LS}}{dt} + C_{j,HS} - \frac{g_{j,L}}{dt} = \varphi_{j,L} + \varphi_{j,L} + S_{j,F}$	-	cheese,	2015
for $t \leq lag$,	And
$\mu_{max} = \mu_{opt} \gamma_T \gamma_{pH} \gamma_{a_w} \gamma_{O_2} \gamma_{CO_2} \varepsilon$				

γ_T (T T)(T T) ²	$(n - M Pa (A_L)(n - n))$		poultry and	Guillard et al
$= \frac{(I - I_{max})(I - I_{min})^2}{(T - T - 1)(T - 1 - T - 2T)}$	$\varphi_{j,L} = M_{j} e_j (\overline{e_L}) (p_{j,\infty} - p_{j,HS})$		salmon	2016
$ (T_{opt} - T_{min})[(T - T_{opt}) - \frac{(T_{opt} - T_{max})(T_{opt} + T_{min} - 2T)}{(T_{opt} - T_{min})} $	$\omega_{iI} = k \left(\frac{M_j A_l}{M_j} \right) \left(n_{iJUSI} - n_{iJUS} \right)$			
$(pH - pH_{max})(pH - pH_{min})$	(r)			
$\gamma_{pH} = \frac{1}{(pH - pH_{min})(pH - pH_{max}) - (pH - pH_{opt})^2}$	$p_{j,HS,I} = \frac{c_{j,F,x=0}}{M_{Ix}}$			
$(a_w - 1)(a_w - a_{w_{min}})$	$M_j \kappa_{H,j}$			
$\gamma_{a_w} = \frac{1}{(a_w - a_{w_{min}})(a_w - 1) - (a_w - a_{w_{opt}})^2}$	$\frac{\partial c_{j,F}}{\partial t} = D_j \frac{\partial c_{j,F}}{\partial x^2} \text{ and } D_j \frac{\partial c_{j,F}}{\partial x} = \frac{\varphi_{j,I}}{A_I} \text{ for x=0, } \forall t$			
$\gamma_{CO_2}(x,t) = 1 - \frac{C_{CO_2,F}(x,t)}{C_{CO_2,max}}$	$S_{j,F} = \left(\frac{r_{O_2 \ max} \cdot p_{O_2,HS}}{K_m + p_{O_2,HS}}\right) N_t \cdot m$			
$V_{O_2,F}(x,T) - C_{O_2,min}$	$\frac{E_{a,k,j}}{R} \times \left(\frac{1}{T} - \frac{1}{Trof k_{j}}\right)$			
$\gamma_{O_2}(x,t) = 1 - \frac{1}{C_{O_2,max}(T) - C_{O_2,min}}$	$k_j = k_{0,j}e^{-k_j - \frac{1}{2} \sum_{j=0}^{j} k_{j,j}}$			
$c = \sum \phi_W$	V_{HS} : volume of neadspace (m ²); $C_{j,HS}$ mass concentration of			
$\varepsilon = \sum_{W} \overline{2\Pi v \neq w(1 - \phi_W)}$	gases species, namely O_2 , CO_2 and N_2 in neadspace (kg.m ⁻)			
And $\phi = \left(\frac{W_{opt} - W}{W_{opt} - W}\right)^3$ for $W = \{T, pH, q_m\} \leq W$	at time t (s), $\psi_{j,L}$ and $\psi_{j,l}$. Thiss now through the human L			
$W_{opt-W_{min}} = (W_{opt-W_{min}}) = W_{opt}$	the interface I between the food sample and headsnace			
N_t : microorganism population (CFU.g ⁻¹) at time t	$(kg s^{-1})$: S ₁ = the production rate due to microbial			
and position x within the food sample; N_{max} :	respiration/fermentation: M : molar mass (kg mol ⁻¹): Pe :			
maximal population (CFU.g ⁻¹); μ_{max} : maximal	Permeability through the lid film (mol m^{-1} s ⁻¹ Pa ⁻¹): A:			
growth rate (s ⁻¹); <i>lag</i> : lag time duration (h) for the	surface area (m ²): e : thickness (m): $p_{i,\infty}$, p_{i,μ_s} and p_{i,μ_s} :			
microorganism of interest; μ_{opt} : optimal growth	partial pressure of gases in the surrounding atmosphere, in			
rate (S ²); γ_w with $w = \{I, pH, a_w, O_2, CO_2\}$:	the headspace and at the immediate vicinity of the food			
adimensional weighting parameters representing	surface (Pa); k: external mass transfer coefficient at the			
factors such as tomporature, pH water activity	interface between the food sample and the headspace (m.s			
discolved O ₂ and CO ₂ concentrations over	¹); R : ideal gas constant (J.mol ⁻¹ .K ⁻¹); T : temperature of the			
microorganism growth rate: s: parameter	food/packaging system; $C_{i,F,x=0}$: mass concentration at the			
representing the interactions between the	food surface (kg.m ⁻³); $r_{O_2 max}$: maximum respiration rate			
different environmental parameters: W. W.	(kg.s ⁻¹ .CFU ⁻¹); K_m : Michaelis-Menten constant (Pa); N_t :			
W_{max} and W_{out} : current, minimal, maximal and	microorganism concentration (CFU.g ⁻¹); m: mass of food (g);			
optimal values for microbial growth of the	$k_{H,j}$: solubility coefficient of gases (mol.Pa ⁻¹ .m ⁻³); D_j :			
environmental factor of concern: C_E , C_{max} and	apparent diffusivity in food (m ² .s ⁻¹); k_i : temperature			
C_{min} : concentration of dissolved gases into the	dependent parameters as permeability, apparent diffusivity			
food, maximal and minimal concentration of	and solubility; $k_{0,j}$: value of parameter at reference			
withstanding by microorganisms (kg.m ⁻³); ϕ_w :	temperature T_{ref} (K); E_a : activation energy (J.mol ⁻¹).			
interaction term.				
$logN(t) = log(N_{min} + \frac{N_{max} - N_{min}}{1 + e^{-\mu_{max}(t-t_i)}})$	$-\left(\frac{\partial n}{\partial t}\right)_{-} - \left(\frac{\partial n}{\partial t}\right)_{-} - \frac{P}{P}\left(\frac{1}{2}\frac{\partial V_{H}}{\partial V_{H}} + V_{H}\frac{\partial \frac{1}{T_{H}}}{\partial T_{H}}\right)$	No	Fresh scallops	Simpson et al 2007
$\ln(\mu_{max}) = \ln(\mu_{ref} - d_{CO_2} \times CO_2) + \frac{E_A}{R}(\frac{1}{T_{ref}} - \frac{1}{T})$	$-(\frac{\partial}{\partial t})_{p} - (\frac{\partial}{\partial t})_{F} - \frac{\partial}{R}(\frac{\partial}{T_{H}})_{H} - \frac{\partial}{\partial t} + \frac{\partial}{\partial t})$			
Shelf life = $\frac{(\log(NMD) - \log(N(0)) \times \ln(10))}{(N + \log(N)) \times \ln(10)}$	$(\overline{\partial t})_F = M_F(\overline{\partial t})$			
$\mu_{max} \times 24$			1	1

N, N_{min} and N_{max} : bacterial concentration at time t (h); minimal and maximal bacterial concentration (CFU.g-1); μ_{max} : specific growth rate (h ⁻¹); μ_{ref} : maximum specific growth rate (h ⁻¹) at reference Temperature T_{ref} (K); T: temperature (K); d_{CO_2} : constant (h ⁻¹); CO_2 : gas concentration; E_A : activation energy (J.mol ⁻¹); R: ideal gas constant (Pa.m ⁻³ .kmol ⁻¹ .K ⁻¹); NMD: bacterial concentration for reaching minimum spoilage.	$ \begin{pmatrix} \frac{\partial c}{\partial t} \end{pmatrix} = D(\frac{\partial^2 c}{\partial x^2}) \\ (\frac{\partial n}{\partial t})_p = (\frac{PA}{e})_p P(y_H - y_a) \\ k = k_0 e^{-\frac{E_a}{RT}} \\ n: \text{ number of moles per gas (kmol); } t: \text{ time (s); } P: \\ \text{permeability (kmol.m-1.s-1.Pa-1); } R: \text{ ideal gas constant (Pa.m-3.kmol.K); } T_H: \text{ temperature in headspace (K); } V_H: \text{ volume of headspace (m3); } M_F: \text{ food mass (kg); } c: \text{ gas concentration in food (kmol.kg-1); } D: \text{ diffusion coefficient (m2.s-1); } x: \text{ distance in the x axis (m); } A: \text{ area (m2); } e: \text{ thickness (m); } y_H \text{ and } y_a: \\ \text{ molar volumetric fraction in headspace and air (kmol.kmol-1); } k: \text{ parameters that depend of temperature as } \\ \text{permeability, solubility and diffusivity; } k_0: \text{ constant; } E_A: \\ \text{ activation energy (J.mol-1); } R: \text{ ideal gas constant (Pa.m-3.kmol-1.K-1). } \end{cases} $			
$T_m = \frac{2.303}{\mu} (log_{10} \frac{N_s}{N_0})$ $T_m: \text{ shelf life (day); } N_0: \text{ initial bacterial concentration (CFU.g^{-1}); } N_s: \text{ maximum allowable bacterial concentration (CFU.g^{-1}); } \mu: \text{ bacterial growth (day^{-1}).}$	$V \frac{\partial c'}{\delta t} = -Ac \times \sqrt{\frac{D}{\pi t}}$ $\frac{\partial c}{\partial t} = D \frac{\partial^2 c}{\partial z^2}$ $\frac{\partial v'}{\partial t} = p_0 S \Delta p_0 + k_c - p_c S \Delta p_c$ $V: \text{ package volume (cm^3); } c \text{ and } c': \text{CO}_2 \text{ concentration in the sauce and in the gas phase (mol.cm^{-3}); } A: \text{ interfacial area} (cm^2); \\ D: \text{CO}_2 \text{ effective diffusivity (cm^2.s^{-1}); } z: \text{CO}_2 \text{ flux} \text{ coordinate (cm); } v': \text{CO}_2 \text{ volume in the gas phase (cm^3); } p_0 \text{ and } p_c: \text{O}_2 \text{ and CO}_2 \text{ permeability (cm^3.m^{-2}.day^{-1}.atm^{-1}); } S: \text{ package superficial area (m^2); } \Delta p_0 \text{ and } \Delta p_c \text{ O}_2 \text{ and CO}_2 \text{ partial pressure difference (atm).}$	No	Pesto sauce	Fabiano et al 2000
$\begin{split} t_{SL} &= D^{-1}(D_{acc}) \\ \frac{dD}{dt} &= k_D D \frac{D_{max} - D}{D_{max}} \delta_{CO_2} \\ \delta_{CO_2} &= 1 - \frac{x_{CO_2}(t)}{x_{CO_2max}} \\ t_{SL} : \text{Shelf life (days); } D : \text{ percentage of surface} \\ \text{deterioration (\%) at time t (s); } D_{acc} : \text{maximal} \\ \text{acceptable deterioration at } t_{acc} (\%); D_{max} : \\ \text{maximum percentage of deterioration (\%); } k_D : \\ \text{deterioration rate constant (s}^{-1}); \delta_{CO_2} : \text{inhibiting} \\ \text{effect of carbon dioxide on the deterioration rate} \end{split}$	$\frac{dn}{dt} = \varphi + R + S$ $\frac{dn_{O_2}}{dt} = \frac{P_{O_2}A}{e} \left(p_{O_2}^{out} - p_{O_2}^{in} \right) - \frac{R_{O_2max}p_{O_2}^{in}}{Km_{O_2} + p_{O_2}^{in}} m - \beta_{O_2}D$ $\frac{dn_{CO_2}}{dt} = \frac{P_{CO_2}A}{e} \left(p_{CO_2}^{out} - p_{CO_2}^{in} \right) - \frac{R_{CO_2max}p_{CO_2}^{in}}{Km_{CO_2} + p_{CO_2}^{in}} m - \beta_{CO_2}D$ $k(T) = k_{ref}e^{-\frac{E_{A,k}(\frac{1}{T} - \frac{1}{T_{ref,k}})}{R}}$ n: quantity of gases species (mol); t: time (s); φ : mass flow of gases through the packaging film between the surrounding atmosphere and the headspace (mol.s ⁻¹); R: the net production or consumption of gases due to	Question asked to consumers : "Just by looking at the strawberries in the tray, are you willing to buy the product or not?" The limit of acceptability represents the time t_{acc} in days at which more than 50% of the panel rejected the product i.e. answered 'No' to the asked question.	Strawberries	Matar et al 2018

(dimensionless); x_{CO_2} : quantity of carbon dioxide in the headspace (%); $x_{CO_2}_{max}$: maximal quantity (%).	respiratic of gases of permeab area of th atmosphe pressure respiratic of Michae product (and carbo (mol.s ⁻¹ .9 temperat	on (mol.s ⁻¹); S: the net production or consum due to metabolic deviation (mol.s ⁻¹); P: ility of the film for gas (mol.m ⁻¹ .Pa ⁻¹ .s ⁻¹); A: s ne film (m ²); e: thickness of the film (m); p^{ou} eric partial pressure of gas (Pa); p^{in} : partial of gas in the headspace (Pa); R_{max} : maximu on rate per kg of food (mol.kg ⁻¹ .s ⁻¹); Km: con elis Menten (Pa); m: the weight of the food (kg); β_{O_2} and β_{CO_2} : rate of oxygen consumpt on dioxide production due to the deterioration ture T (K) dependent parameter as P and R_{p}	nption surface ^{<i>tt</i>} : um nstant tion ion (%); <i>k</i> : max;				
	(K); <i>E_A</i> : a	ctivation energy (J.mol ⁻¹); R : gas law constant	nt				
	(J.mol ⁻¹ .K	⁻¹).					
		Link from shelf life to food los	s and v	vaste			
Mathematical equation used to link shelf life a	nd FLW	Integration of consumers behavior		Shelf life set up	Produ	ct studied	Reference
$y = b_0 + \frac{b_1}{x}$ y: returned goods ratio, considered in the article as f waste; x: shelf life; b_0 and b_1 : constant.	ood	None	Shelf time of the e	life is considered as the product before reaching expired shelf life date.	826 produc Italian fo	different ets from an od company	Spada et al 2018
$FLP_1 = e^{-k_a SL}$ $FLP_2 = \frac{1}{1 - e^{-1}} \times e^{-e^{\frac{1}{-k_b SL}} - e^{-1}}$ $FLP_3 = k_c SL$ $FLP: \text{ food loss probability; } SL: \text{ shelf life; } k_a, k_b \text{ and } k$ kinetic constant.	κ _c :	None	Micro	Experimental : bbiological and sensory juality assessment.	Ripen	ed cheese	Conte el al 2015
$\overline{Q'_t = (w-t)^x + \sum_{t=1}^{1} Q_t + (Q_c^w \frac{1}{w})(SL - w)}$ $Q'_t: \text{ cumulative quantity of product sold; } Q_t: \text{ amount product sold; } SL: \text{ shelf life; } w: \text{ time remaining before reaching shelf life at deliver step; } Q_c^w: \text{ quantity of foc delivered by the producer.}$	7) of od	None	(micrc q	Experimental : Chemical-physical, obiological and sensory juality assessment.	Che	esecake	Gutierez et al 2017
$P(W_t) = P(C_t) \times P(R_t)$ $P(W_t) = \frac{(t+n-1)!}{(n-1)! t!} (1-p)^n p^t \times (1-e^{-e^{\frac{\ln(t-1)!}{2}}}$ $P(W_t): \text{ total amount of wasted food; } P(R_t): \text{ probability of intercept and scale parameters; } P(C_t): \text{ probability of } P(C_t): probabilit$	$\frac{(t)-\mu}{\sigma}$) lity of <i>d</i> σ :	None	(Model see part I of table)	Fresh-(cut Iceberg salad	Manzocco et al 2017

food to be consumed by consumers at time t; n and p: size				
and probe parameters.				
$f_c = \sum_{i=1}^n (\frac{\Delta t_i}{SL_i})_{T_I}$	None	Model (see part I of table)	Variety peaches "elegant lady"	Aiello et aL 2012
$f_t = 1 - f_c$ f_c and f_t : fraction of consumed and residual shelf life; Δt_i :				
time interval; SL_i : shelf life interval; T_i : temperature in the				
interval.				
Fractions above the 100% consumed shelf life are considered				
as food losses and wastes.				
$l_s^p = a \int_{t_i}^{t_j} D_s^p(t) dt + b$ $u^p = -\sum_{s=s_{tot}} \sum_{t_i}^{s=s_{tot}} u^p \dots$	$w = P_T P_d P_p$ w: likelihood consumer behaviors; P _T : probability to storage temperature at	Model (see part I of table)	Strawberries	Matar 2018
$L_{tot} - \sum_{s=1} l_s W$	home : ambient or refrigerated storage;			
l_s^p : percentage of losses (%) of the scenario s using the	P_d : probability to storage duration at			
packaging p ; D_s^p : deterioration curve; t_i and t_i : time at which	nome, before consumption : one day or more: P : probability related to			
the post-harvest stage begins and ends respectively (s); a and	note, r _p . probability related to			
b: estimated parameters; w: likelihood consumer behaviors;	packaging state. Kept of removed			
L_{tot}^{r} : cumulative percentage of loss within the sum of all	packaging at nome.			
scenarios.				
Link	rom food loss and waste to envir	ronmental impact	Deck start disch	P. f.
Link 1 Mathematical equation used to link food loss	rom food loss and waste to envir Food loss and waste estimation	ronmental impact Shelf life estimation	Product studied	References
Link 1 Mathematical equation used to link food loss and waste and environmental impact	Food loss and waste to envir	ronmental impact Shelf life estimation	Product studied	References
LinkMathematical equation used to link food loss and waste and environmental impact $e = B(1 - L)$ $E^{i} = B(E^{i} + D^{i} + W^{i}) + W^{i}DI$	From food loss and waste to envir Food loss and waste estimation Hypothetic	Conmental impact Shelf life estimation None No realistic comparie	Product studied Ketchup, bread, milk,	References Williams et al 2011;
Link 1Mathematical equation used to link food loss and waste and environmental impact $e = B(1 - L)$ $E^i = B(F^i + P^i + W_P^i) + W^i BL$ enceted for $f = B(F^i + P^i + W_P^i) + W^i BL$	From food loss and waste to envir Food loss and waste estimation Hypothetic	Shelf life estimation None No realistic scenario	Product studied Ketchup, bread, milk, cheese, beef, minced	References Williams et al 2011; Wikström et al
Link 1Mathematical equation used to link food loss and waste and environmental impact $e = B(1 - L)$ $E^i = B(F^i + P^i + W_P^i) + W^i BL$ $e:$ eaten food; $B:$ purchased food (kg, L etc); $L:$ fraction of food losses (1=0=no losses) 1=1=0!!	Food loss and waste to envir Food loss and waste estimation Hypothetic	Shelf life estimation None No realistic scenario	Product studied Ketchup, bread, milk, cheese, beef, minced meat, rice and	References Williams et al 2011; Wikström et al 2010; Wikström et al
Link 1Mathematical equation used to link food loss and waste and environmental impact $e = B(1 - L)$ $E^i = B(F^i + P^i + W_P^i) + W^i BL$ $e:$ eaten food; $B:$ purchased food (kg, L etc); $L:$ fraction of food losses (L=0=no losses; L=1=allpurchased food is lost): F^i : overall energy use or	Food loss and waste to envir Food loss and waste estimation Hypothetic	ronmental impact Shelf life estimation None No realistic scenario	Product studied Ketchup, bread, milk, cheese, beef, minced meat, rice and yoghourt	References Williams et al 2011; Wikström et al 2010; Wikström et al 2014:
Link 1Mathematical equation used to link food loss and waste and environmental impact $e = B(1 - L)$ $E^{i} = B(F^{i} + P^{i} + W_{P}^{i}) + W^{i}BL$ $e:$ eaten food; $B:$ purchased food (kg, L etc); $L:$ fraction of food losses (L=0=no losses; L=1=allpurchased food is lost); $E^{i}:$ overall energy use orenvironmental impact (ML carbon diovide equivalent)	From food loss and waste to envir Food loss and waste estimation Hypothetic	ronmental impact Shelf life estimation None No realistic scenario	Product studied Ketchup, bread, milk, cheese, beef, minced meat, rice and yoghourt	References Williams et al 2011; Wikström et al 2010; Wikström et al 2014; Wikström et al
Link 1Mathematical equation used to link food loss and waste and environmental impact $e = B(1 - L)$ $E^i = B(F^i + P^i + W_P^i) + W^i BL$ $e:$ eaten food; $B:$ purchased food (kg, L etc); $L:$ fraction of food losses (L=0=no losses; L=1=allpurchased food is lost); $E^i:$ overall energy use orenvironmental impact (MJ, carbon dioxide equivalent $etc): F^i:$ energy use or environmental impact to	From food loss and waste to envir Food loss and waste estimation Hypothetic	ronmental impact Shelf life estimation None No realistic scenario	Product studied Ketchup, bread, milk, cheese, beef, minced meat, rice and yoghourt	References Williams et al 2011; Wikström et al 2010; Wikström et al 2014; Wikström et al 2016
Link 1Mathematical equation used to link food loss and waste and environmental impact $e = B(1 - L)$ $E^i = B(F^i + P^i + W_P^i) + W^i BL$ $e:$ eaten food; $B:$ purchased food (kg, L etc); $L:$ fraction of food losses (L=0=no losses; L=1=allpurchased food is lost); $E^i:$ overall energy use orenvironmental impact (MJ, carbon dioxide equivalentetc); $F^i:$ energy use or environmental impact toproduce and distribute one unit of nurchased food to	Food loss and waste to envir Food loss and waste estimation Hypothetic	ronmental impact Shelf life estimation None No realistic scenario	Product studied Ketchup, bread, milk, cheese, beef, minced meat, rice and yoghourt	References Williams et al 2011; Wikström et al 2010; Wikström et al 2014; Wikström et al 2016
Link 1Mathematical equation used to link food loss and waste and environmental impact $e = B(1 - L)$ $E^i = B(F^i + P^i + W_P^i) + W^i BL$ e : eaten food; B : purchased food (kg, L etc); L : fraction of food losses (L=0=no losses; L=1=all purchased food is lost); E^i : overall energy use or environmental impact (MJ, carbon dioxide equivalent etc); F^i : energy use or environmental impact to produce and distribute one unit of purchased food to consumer: P^i : energy use or environmental impact to	Food loss and waste to envir Food loss and waste estimation Hypothetic	ronmental impact Shelf life estimation None No realistic scenario	Product studied Ketchup, bread, milk, cheese, beef, minced meat, rice and yoghourt	References Williams et al 2011; Wikström et al 2010; Wikström et al 2014; Wikström et al 2016
Link 1Mathematical equation used to link food loss and waste and environmental impact $e = B(1 - L)$ $E^i = B(F^i + P^i + W_P^i) + W^i BL$ $e:$ eaten food; $B:$ purchased food (kg, L etc); $L:$ fraction of food losses (L=0=no losses; L=1=allpurchased food is lost); $E^i:$ overall energy use orenvironmental impact (MJ, carbon dioxide equivalentetc); $F^i:$ energy use or environmental impact toproduce and distribute one unit of purchased food toconsumer; $P^i:$ energy use or environmental impact toproduce the packaging for one unit of purchased food	Food loss and waste to envir Food loss and waste estimation Hypothetic	ronmental impact Shelf life estimation None No realistic scenario	Product studied Ketchup, bread, milk, cheese, beef, minced meat, rice and yoghourt	References Williams et al 2011; Wikström et al 2010; Wikström et al 2014; Wikström et al 2016
Link 1Mathematical equation used to link food loss and waste and environmental impact $e = B(1 - L)$ $E^i = B(F^i + P^i + W_P^i) + W^i BL$ e : eaten food; B : purchased food (kg, L etc); L : fraction of food losses (L=0=no losses; L=1=all purchased food is lost); E^i : overall energy use or environmental impact (MJ, carbon dioxide equivalent etc); F^i : energy use or environmental impact to produce and distribute one unit of purchased food to consumer; P^i : energy use or environmental impact to produce the packaging for one unit of purchased food to consumer; W_P^i ; waste handling of packaging; W^i .	Food loss and waste to envir Food loss and waste estimation Hypothetic	ronmental impact Shelf life estimation None No realistic scenario	Product studied Ketchup, bread, milk, cheese, beef, minced meat, rice and yoghourt	References Williams et al 2011; Wikström et al 2010; Wikström et al 2014; Wikström et al 2016
Link 1Mathematical equation used to link food loss and waste and environmental impact $e = B(1 - L)$ $E^i = B(F^i + P^i + W_P^i) + W^i BL$ e : eaten food; B : purchased food (kg, L etc); L : fraction of food losses (L=0=no losses; L=1=all purchased food is lost); E^i : overall energy use or environmental impact (MJ, carbon dioxide equivalent etc); F^i : energy use or environmental impact to produce and distribute one unit of purchased food to consumer; P^i : energy use or environmental impact to produce the packaging for one unit of purchased food to consumer; W_P^i : waste handling of packaging; W^i : waste handling of the food losses at consumer phase.	Food loss and waste to envir Food loss and waste estimation Hypothetic	ronmental impact Shelf life estimation None No realistic scenario	Product studied Ketchup, bread, milk, cheese, beef, minced meat, rice and yoghourt	References Williams et al 2011; Wikström et al 2010; Wikström et al 2014; Wikström et al 2016
Link 1Mathematical equation used to link food loss and waste and environmental impact $e = B(1 - L)$ $E^i = B(F^i + P^i + W_P^i) + W^i BL$ e : eaten food; B : purchased food (kg, L etc); L : fraction of food losses (L=0=no losses; L=1=all purchased food is lost); E^i : overall energy use or environmental impact (MJ, carbon dioxide equivalent etc); F^i : energy use or environmental impact to produce and distribute one unit of purchased food to consumer; P^i : energy use or environmental impact to produce the packaging for one unit of purchased food to consumer; W_P^i : waste handling of packaging; W^i : waste handling of the food losses at consumer phase.	Food loss and waste to envir Food loss and waste estimation Hypothetic	ronmental impact Shelf life estimation None No realistic scenario None	Product studied Ketchup, bread, milk, cheese, beef, minced meat, rice and yoghourt Ham products	References Williams et al 2011; Wikström et al 2010; Wikström et al 2014; Wikström et al 2016
Link fMathematical equation used to link food loss and waste and environmental impact $e = B(1 - L)$ $E^i = B(F^i + P^i + W_P^i) + W^i BL$ e : eaten food; B : purchased food (kg, L etc); L : fraction of food losses (L=0=no losses; L=1=all purchased food is lost); E^i : overall energy use or environmental impact (MJ, carbon dioxide equivalent etc); F^i : energy use or environmental impact to produce and distribute one unit of purchased food to consumer; P^i : energy use or environmental impact to produce the packaging for one unit of purchased food to consumer; W_P^i : waste handling of packaging; W^i : waste handling of the food losses at consumer phase. $E(x)^{product} = \frac{E(0)^{product} + xE^{food treatment}}{1 - x}$	Food loss and waste to envir Food loss and waste estimation Hypothetic $x \equiv \frac{l}{\rho_{adibla} M_{total}}$	ronmental impact Shelf life estimation None No realistic scenario None No realistic scenario	Product studied Ketchup, bread, milk, cheese, beef, minced meat, rice and yoghourt Ham products	References Williams et al 2011; Wikström et al 2010; Wikström et al 2014; Wikström et al 2016 Yokokawa et al 2018
Link fMathematical equation used to link food loss and waste and environmental impact $e = B(1 - L)$ $E^i = B(F^i + P^i + W_P^i) + W^i BL$ $e:$ eaten food; $B:$ purchased food (kg, L etc); $L:$ fraction of food losses (L=0=no losses; L=1=allpurchased food (kg, L etc); $L:$ fraction of food losses (L=0=no losses; L=1=allpurchased food is lost); $E^i:$ overall energy use orenvironmental impact (MJ, carbon dioxide equivalentetc); $F^i:$ energy use or environmental impact toproduce and distribute one unit of purchased food toconsumer; $P^i:$ energy use or environmental impact toproduce the packaging for one unit of purchased foodto consumer; $W_P^i:$ waste handling of packaging; $W^i:$ waste handling of the food losses at consumer phase. $E(x)^{product} = \frac{E(0)^{product} + xE^{food treatment}}{1-x}$ $E(x)^{product}$ and $E(0)^{product}:$ life cycle environmental	From food loss and waste to environ Food loss and waste estimation Hypothetic $x \equiv \frac{l}{\rho_{edible}M_{total}}$ F	ronmental impact Shelf life estimation None No realistic scenario None No realistic scenario None No realistic scenario	Product studied Ketchup, bread, milk, cheese, beef, minced meat, rice and yoghourt Ham products	References Williams et al 2011; Wikström et al 2010; Wikström et al 2014; Wikström et al 2016

when the value of food loss rate is x and 0 respectively; $E^{food\ treatment}$: environmental impact derived from waste treatment for the same amount of food waste as a unit of consumption.	<i>x</i> : food loss rate; <i>l</i> : food losses (kg); ρ_{edible} : proportion of edible parts in the food; M_{total} : total amount of food provided; <i>N</i> number of products per purchase (constant); <i>M</i> : amount of food per package; r_M :average rate of consumption per day (kg.day ⁻¹); $d_{consume}$: number of days of food consumption; <i>F</i> : Functional unit based on the amount of food consumption.			
$WEI_i = PEI + PEFI \times FLP_i$ WEI_i : eco-indicator; <i>PEI</i> and <i>PEFI</i> :environmental impact of the package and packaged food; <i>FLP_i</i> : food loss probability.	Model (see part II of table)	Yes, experimental (texture, weight loss, microbiological, sensory (Costa el al 2016)): Realistic scenario	Ripened cheese	Conte el al 2015
LCA was made using SimaPro with the ReCiPe method.	Model (see part II of table)	Yes, experimental: Realistic scenario	Cheesecake	Gutierez et al 2017
LCA standardization method (ISO, 2006)	Modelling based on Discrete Event Simulation (DES) technique (Quested, 2013)	Yes, experimental (microbiological) (Muriel-Galet et al (2012)): Realistic scenario	Fresh milk	Manfredi et al (2015)
$NGWP_k = (\Delta GWP_{nano,k} - GWP_{food,k} \times r_{k,j})_{jk}$ $NGWP$: Net Global Warming Potential; $\Delta GWP_{nano,k}$: additional GWP for nanomaterials incorporated to package food type k; $GWP_{food,k}$: reduced GWP due to avoided food waste; $r_{k,j}$: average percentage of food waste avoided by nano-packaging per 1 kg of packaged food.	$r_{i,k,j} = \frac{w_{i,k}(p'_{i,k} - p_{i,k})}{1 - p_{i,k,j}}$ $r_{i,k,j}: \text{ percentage of food waste avoided by nano-packaging per kg of packaged food k with a j-day shelf life extension; w: percentage of food wasted with the use of packaging without nanomaterials; p and p': likelihood of complete food consumption within the original shelf life and for one day more.}$	Yes, experimental (color, microbiological, physical) (Gokkurt et al (2012); Huang et al (2017); Emamifar et al (2010); Lloret et al (2016)): Realistic scenario	Apricot, tomato paste, fresh orange juice and cooked ham	Zhang et al (2019)
LCA was made using SimaPro with Eco invent 3.4.	Model (see part II of table)	Model (see part I of table) Realistic scenario	Strawberries	Matar et al 2018

Supplementary table: Model used in literature for shelf life estimation in MAP and its link to FLW reduction and environmental impact