
Supplementary Material

This supplementary material document contains additional details of the methods section, including a
description of the performed analysis.

1 METHODS
Our code for simulations is available on GitHub: https://github.com/oist/ecsu-dyadic_
interaction
1.1 Simulated agents and environment

The strength of an agent’s acoustic signal is attenuated in two different ways:

• Attenuation due to distance: The strength of the acoustic signal (or sound intensity) decays inversely
proportional to the square of the distance from the sound source, i.e., it obeys the inverse square law. It
will be maximum and equal to that of the emitted strength at a distance equal to the 2R between the
center of the agents.

• Attenuation due to “self-shadowing” mechanism: The “self-shadowing” mechanism refers to the
linear attenuation of the strength of the acoustic signal, which is proportional to the distance traveled
by the signal within the agent’s body, i.e., the shielded distance, Dsh. The range of Dsh goes from 0,
when there is a direct line between the sound source and the sensor, to 2R, when the sensor is directly
opposed to the sound source. This attenuation is a natural consequence of the agent’s embodiment (Di
Paolo, 2000). The equations to calculate the shielded distance, Dsh, are available in the Supplementary
Material of the Candadai et al. (2019) model.

Thus, the sensory input for each agent’s acoustic sensor (i.e., the attenuated strength of another agent’s
acoustic signal) is obtained by first, applying the inverse square law to the sound intensity at the position of
the sensor, and then multiplying it by an attenuating factor that goes linearly from 1, when Dsh = 0, to 0.1,
when Dsh = 2R (Di Paolo, 2000).

Agents are able to navigate freely in the environment except when they are involved in a collision.
Collisions are modeled as point elastic, i.e., no effect in the agents’ angular velocity (frictionless bodies)
and the entire system’s energy is conserved (no loss of energy). Agent bodies are considered as identical,
so that when they are colliding, the result is the instantaneous exchange of their velocity vectors. Due to
lack of inertia, agents take back control of their movement immediately after colliding (Di Paolo, 2000).
1.2 Neural architecture

The output of the sensor layer nodes is given by:

os = gsσ(Is + θs) (S1)

where σ(x) = 1/(1 + e−x) is the sigmoidal activation function, Is is the sensory input, θs is the bias, and
gs is the gain. Both sensor nodes share common bias and gain.

In both 2-neuron and 3-neuron architectures, each inner layer neuron’s activity is governed by the
following state equation:

1

https://github.com/oist/ecsu-dyadic_interaction
https://github.com/oist/ecsu-dyadic_interaction


Supplementary Material

τi
dyi
dt

= −yi +
N∑
j=1

wijσ(yj + θj) +
2∑
s=1

wisos (S2)

where dyi/dt refers to the rate of change of internal state yi of neuron i based on a time constant τi. The
rate of change dyi/dt depends on three values: the current state of the neuron, the weighted sum of outputs
from all N neurons (for the 2-neuron model N = 2 and for the 3-neuron model N = 3 ) in the network,
and the total external input. The input from other neurons is obtained by weighting their output with
weights wij from neuron j to i. The output of each neuron based on its internal state is given by a sigmoidal
activation function σ(yj + θj) where θj refers to the neuron’s bias. The total external input received by the
neuron is given by the weighted sum of the sensory input with weights wis from sensor node s to neuron i
and os is the sensory output from each sensor node. All neurons share common time-constant and bias.

The input to the actuator layer is a weighted sum of the neurons’ outputs. The output of each of the
actuator layer nodes i, mi, is given by:

mi = gmσ

(
N∑
n=1

wni ∗ on + θi

)
(S3)

where on is the output of the corresponding neuron n, that is weighted by wni, θi is the bias, and gm is
the gain. All actuator nodes share common bias and gain.
1.3 Performance measure

Neural complexity is calculated by creating a 2-dimensional or 3-dimensional (depending on the number
of neurons in the inner layer) histogram of neural output values in a given trial. The neural outputs
are obtained from a sigmoid function, therefore, they are bounded in the range [0, 1]. The output space
is divided into 100 bins along each dimension, i.e., totaling ten thousand bins for the 2-neuron model
(2-dimensional output space) and one million bins for the 3-neuron model (3-dimensional output space).

Then, the bins are filled with data points collected for each trial and the probability of the neural activity
being in a given bin [i, j], pi,j or [i, j, k], pi,j,k, respectively, is given by the number of points in that bin
divided by the total number of points in the trial (N = 2000).

From these probabilities, the neural entropy H is given by:

H =
100∑
i=1

100∑
j=1

−pijlog2(pij) (S4)

H =
100∑
i=1

100∑
j=1

100∑
k=1

−pijklog2(pijk) (S5)

for the 2-neuron and 3-neuron models, respectively.

Next, the neural entropy is normalized to be in the range [0, 1] by dividing by the maximum
neural entropy that can be achieved in the given dimension and with the given number of
data points., i.e., log2(total number of fillable bins), where total number of fillable bins =

2



Supplementary Material

min(total number of bins, total number of data points). This is achieved when the data points for a
specific trial are uniformly populated among the bins. Hence, the normalized neural entropy is given by:

Ĥ = H/log2(total number of fillable bins) (S6)

For both 2-neuron and 3-neuron models, the total number of data points is 2000 per trial (i.e., one data
point per step size 0.1 for 200 simulation seconds). Since for both cases, the number of data points in each
trial is less than the total number of bins, we have that total number of fillable bins = 2000. Thus, the
normalized neural entropy per trial is given by:

Ĥ = H/log2(2000) (S7)

In contrast to the Candadai et al. (2019) implementation, we calculate neural entropy measure for
each experimental trial separately. The individual fitness value for an agent is calculated as the average
normalized neural entropy of all trials. In the case of interacting pairs of agents, the fitness value for each
pair is calculated as the average of their individual fitness values.
1.4 Genetic algorithm

We used the following parameter ranges to scale genotype values: for sensor and actuator nodes, the
gains were scaled in the interval [1,20] and [1,5], respectively; for neurons, the time-constants were scaled
in the interval [1,2]; all connection weights were scaled in the interval [-8,8] and all biases were scaled in
the interval [-3,3].
1.5 Nonlinear Time Series Analysis

Nonlinear time series analysis is a useful approach to understanding the underlying dynamics of a system
based solely on its realizations (e.g., time series observations) and without direct/explicit knowledge to its
(unknown) properties. It is a top-down approach in which one utilizes the system’s available observations
to realize its potential state space and attractor(s) (Stam, 2005).

Let {x0, x1, x2, ..., xt, ..., xn} be a time series associated with a system in which xt denotes the
system’s output at time t. Such time series along with delay coordinate embedding (Takens, 1981;
Kodba et al., 2005; Perc, 2006) procedure can be utilized to reconstruct the system’s attractor p(t) =
(xt, xt+τ , xt+2τ , ..., xt+(m−1)τ ), where τ and m are the embedding delay and the embedding dimension,
respectively.

To estimate the optimal embedding delay τ , Fraser and Swinney (1986) used the position at which xt and
xt+τ attained their first minimum mutual information (MI) i.e., the minimum amount of information that
the state xt provided about the state xt+τ (Kodba et al., 2005; Perc, 2006).

For estimating a proper embedding dimension m, Kennel et al. (1992) introduced the false nearest
neighbor method (FNN). The main idea of this method consists of minimizing the fraction of points having
a false nearest neighbor through the choice of a sufficiently large embedding dimension m.

In the present study, we were interested in determining the above embedding dimension m for the
time series of the evolved agents’ neural activity (neural states) in different conditions. We achieved this
objective as follows:

1. We obtained the time series of neural activity in both, 2-neuron and 3-neuron models, for the following
conditions:

Frontiers 3



Supplementary Material

• Decoupled Individual Evolution (Decoupled IE): From the best evolved agents (agent 1) of
each run (10 runs) in IE condition, we tested them in isolation for 4 trials. Then, for determining
the embedding dimension m, we used the time series of neural states of neuron 1, trial 1, from
each isolated agent (agent 1).

• Decoupled Social Evolution (Decoupled SE): From the best evolved pairs of agents (agent 1
and agent 2) of each run (10 runs) in SE condition, we tested each agent 1 in isolation for 4 trials.
Then, for determining the embedding dimension m, we used the time series of neural states of
neuron 1, trial 1, from each isolated agent (agent 1).

• Coupled Social Evolution (Coupled SE): From the best evolved pairs of agents (agent 1 and
agent 2) of each run (10 runs) in SE condition, we tested each pair, consisted of agent 1 and agent
2, in interaction for 4 trials. Then, for determining the embedding dimension m, we used the time
series of neural states of neuron 1, trial 1, from each agent 1.

2. In order to estimate the optimal embedding delay τ using MI, we employed the nonlinear time series
analysis “mutual.exe” program provided by Perc (2006). It requires the following parameters to be set
by the user: number of data points, number of bins, and maximal embedding delay. We estimated the
proper number of bins using the Freedman–Diaconis rule (Freedman and Diaconis, 1981):

Bins =
‖max(x)−min(x)‖

2IQR(x)3√n

(S8)

where IQR(x) is the interquartile range of the data and n is the number of observations in the sample
x.

3. In order to determine the proper embedding dimension m using the FNN with Euclidean metric
(Kennel et al., 1992), we employed the NoLiTSA Python module provided by Mannattil (2018), where
we specified the optimal embedding delay τ previously estimated.

REFERENCES

Candadai, M., Setzler, M., Izquierdo, E. J., and Froese, T. (2019). Embodied dyadic interaction increases
complexity of neural dynamics: A minimal agent-based simulation model. Frontiers in Psychology
10:540. doi:10.3389/fpsyg.2019.00540

Di Paolo, E. A. (2000). Behavioral coordination, structural congruence and entrainment in a simulation of
acoustically coupled agents. Adaptive Behavior 8, 27–48. doi:10.1177/105971230000800103

Fraser, A. M. and Swinney, H. L. (1986). Independent coordinates for strange attractors from mutual
information. Physical Review A 33, 1134–1140. doi:10.1103/PhysRevA.33.1134

Freedman, D. and Diaconis, P. (1981). On the histogram as a density estimator: L2 theory. Probability
Theory and Related Fields 57, 453–476. doi:10.1007/BF01025868

Kennel, M. B., Brown, R., and Abarbanel, H. D. I. (1992). Determining embedding dimension for
phase-space reconstruction using a geometrical construction. Physical Review A 45, 3403–3411.
doi:10.1103/PhysRevA.45.3403

Kodba, S., Perc, M., and Marhl, M. (2005). Detecting chaos from a time series. European Journal of
Physics 26, 205–215. doi:10.1088/0143-0807/26/1/021

Mannattil, M. (2018). NoLiTSA (NonLinear Time Series Analysis) Python module. GitHub repository
URL: https://github.com/manu-mannattil/nolitsa

Perc, M. (2006). Introducing nonlinear time series analysis in undergraduate courses. Fizika A 15, 91–112

4

https://doi.org/10.3389/fpsyg.2019.00540
https://doi.org/10.1177/105971230000800103
https://doi.org/10.1103/PhysRevA.33.1134
https://doi.org/10.1007/BF01025868
https://doi.org/10.1103/PhysRevA.45.3403
https://doi.org/10.1088/0143-0807/26/1/021
https://github.com/manu-mannattil/nolitsa
https://github.com/manu-mannattil/nolitsa


Supplementary Material

Stam, C. J. (2005). Nonlinear dynamical analysis of EEG and MEG: Review of an emerging field. Clinical
Neurophysiology 116, 2266–2301. doi:10.1016/j.clinph.2005.06.011

Takens, F. (1981). Detecting strange attractors in turbulence. In Dynamical Systems and Turbulence,
Warwick 1980. Lecture Notes in Mathematics, eds. D. Rand and L. S. Young (Berlin, Heidelberg:
Springer), vol. 898. 366–381. doi:10.1007/BFb0091924

Frontiers 5

https://doi.org/10.1016/j.clinph.2005.06.011
https://doi.org/10.1007/BFb0091924

	Methods
	Simulated agents and environment
	Neural architecture
	Performance measure
	Genetic algorithm
	Nonlinear Time Series Analysis


