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1 Description of the considered multi-criteria decision-making (MCDM) methods 

The computational details of the selected MCDM methods are described in the following 

subsections. 

1.1 Simple Additive Weighting 

Simple Additive Weighting (SAW), or Weighted Sum Model (WSM) (Fishburn, 1967), is probably 

the most common MCDM method. It is one of the simplest techniques, very popular also among 

practitioners (Zanakis et al., 1998). 

The principle behind this technique is the additive utility assumption since alternatives are ranked 

based of their weighted sum performance. The weights 𝑤𝑗 are directly assigned to criteria by 

decision-maker(s). Equation (1) is used to calculate the final performance value for the i-th 

alternative, P(Ai): 

𝑃(𝐴𝑖) =∑𝑤𝑗 ∙ 𝑟𝑖𝑗

𝑛

𝑗=1

          (1) 

where n is the number of criteria, 𝑤𝑗 is the weight of each criterion and 𝑟𝑖𝑗 is the normalized score of 

alternative Ai with respect to criterion j. 

Indeed, the method is formulated for problems in which all the considered criteria are numerical and 

expressed in the same unit. Moreover, all criteria should be benefit-type (maximization problem) or 

cost-type (minimization problem). Therefore, if the variables are not comparable, the decision matrix 

needs to be normalized, in order to add up non-dimensional values (Carriço et al., 2014). 

The normalized value 𝑟𝑖𝑗 can be calculated as follows, for benefit criteria: 

𝑟𝑖𝑗 =
𝑥𝑖𝑗 − 𝑥𝑚𝑖𝑛,𝑗

𝑥𝑚𝑎𝑥,𝑗 − 𝑥𝑚𝑖𝑛,𝑗
           (2) 

and for cost criteria: 

𝑟𝑖𝑗 =
𝑥𝑚𝑎𝑥,𝑗 − 𝑥𝑖𝑗

𝑥𝑚𝑎𝑥,𝑗 − 𝑥𝑚𝑖𝑛,𝑗
           (3) 

where 𝑥𝑖𝑗 is the score of alternative 𝐴𝑖 with respect to criterion 𝐶𝑗, while 𝑥𝑚𝑖𝑛,𝑗 and 𝑥𝑚𝑎𝑥,𝑗 are the 

minimum value and the maximum value, respectively, for each criterion j (Geldermann and Schöbel, 

2011). 

The best alternative is the one with the highest P(Ai) value, for a maximization decision problem (and 

with the lowest P(Ai) value for a minimization problem) (Caterino et al., 2009). 
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1.2 Weighted Product Method 

The Weighted Product Method (WPM) is very similar to the SAW, but it uses multiplication, instead 

of addition, to connect the decision matrix values (Bridgman, 1922). 

Each alternative is compared with the others by multiplying different ratios, one for each criterion. 

Each ratio is raised to the power of the corresponding criterion weight (defined by decision-makers). 

Therefore, to compare the two alternatives Ak and Al (where 1 ≤ k, l ≤ m), Equation (4) is used: 

𝑅 (
𝐴𝑘
𝐴𝑙
) =∏ (

𝑥𝑘𝑗

𝑥𝑙𝑗
)

𝑤𝑗

           (4)
𝑛

𝑗=1
 

Alternative Ak is better than Al if the value 𝑅 (
𝐴𝑘

𝐴𝑙
) is higher than or equal to 1 when the criteria are 

benefit-type (lower than 1 for cost criteria). The optimal alternative is the one that is better than (or at 

least equal to) all the other alternatives (Triantaphyllou and Mann, 1989). 

The structure of the method eliminates all the different units of measure, performing a 

“dimensionless analysis”. Therefore, the WPM method can also be used in multi-dimensional 

decision problems. However, it requires that all the criteria are of the same type, i.e., benefit or cost 

(Caterino et al., 2009).  

An alternative approach of this method consists in calculating, for each alternative, the following 

performance value, P(Ai): 

𝑃(𝐴𝑖) =∏(𝑥𝑖𝑗)
𝑤𝑗

𝑛

𝑗=1

           (5) 

The alternatives are ranked based on their total performance value: the optimal alternative is the one 

with the highest P(Ai) (Athawale and Chakraborty, 2012). 

1.3 Analytic Hierarchy Process 

The Analytic Hierarchy Process (AHP) was developed by Thomas L. Saaty in the 1970s (Saaty, 

1980) and it has been widely used to solve MCDM problems in different fields. The method is based 

on the multi-attribute utility theory and allows the breakdown of complex problems into a 

hierarchical structure, thus facilitating the assignment of judgements by decision-makers (Altunok et 

al., 2010). 

The application of the AHP method can be divided into four main steps (Kiciński and Solecka, 

2018). In the first step, a hierarchical structure of the problem is defined, with the goal at the top 

level, criteria and (if applicable) sub-criteria at the intermediate levels, and alternatives at the bottom 

of the hierarchy (Athawale and Chakraborty, 2012). Supplementary Figure 1 shows an example of a 

decision problem hierarchy in the AHP method. 
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Supplementary Figure 1. Example of the hierarchical structure of a decision-making problem. 

 

The next step involves the decision-maker(s) in the determination of subjective preferences, by 

means of pairwise comparisons. Therefore, different pairwise comparison matrices are developed for 

each level of the hierarchical structure. On each hierarchy level, elements are compared in pairs 

among themselves with respect to each of the elements in the next higher level. For these pairwise 

comparisons, the fundamental scale of Saaty (Saaty, 1980) is used to measure how many times an 

element is more important over another one (Supplementary Table 1). 1 corresponds to equal 

importance between two elements, while 9 represents a strong preference for the first element 

compared to the second one (Sarraf and McGuire, 2020). 

 

Supplementary Table 1. The fundamental scale of Saaty for comparisons in AHP. 

Intensity of importance Definition 

1 Equal importance 

3 Moderate importance 

5 Strong importance 

7 Very strong importance 

9 Extreme importance 

2, 4, 6, 8 Intermediate values 

 

Therefore, each pairwise comparison matrix C is a positive reciprocal square matrix, where 𝑎𝑖𝑗 = 1 

when 𝑖 = 𝑗 (i.e., all the main diagonal values are equal to 1 because they correspond to the self-

comparison of the elements) and 𝑎𝑗𝑖 = 𝑎𝑖𝑗 (where 𝑎𝑖𝑗 is the relative importance of i-th element over 
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j-th element) (Athawale and Chakraborty, 2012). For example, if n elements are compared, the 

following matrix is calculated: 

𝐶 = [

1 𝑎12 … 𝑎1𝑛
1/𝑎12 1 … 𝑎2𝑛
… … … …

1/𝑎1𝑛 1/𝑎2𝑛 … 1

]            (6) 

The number of judgements for such a matrix of order n is 𝑛 ∙ (𝑛 − 1)/2 (Sarraf and McGuire, 2020). 

Therefore, for each pairwise matrix, a vector of priorities is calculated by finding the eigenvector 

with the largest eigenvalue (𝜆𝑚𝑎𝑥) (Saaty 1980). This vector represents the relative importance of the 

different elements being compared. 

The third step concerns the study of the consistency of the pairwise comparison, at each level of the 

hierarchy. In other words, it aims at checking the consistency of the judgements provided by the 

decision-maker(s) in the previous phase. Two indexes are calculated, i.e., the consistency index (CI): 

𝐶𝐼 =
𝜆𝑚𝑎𝑥 − 𝑛

𝑛 − 1
           (7) 

and the consistency ratio (CR): 

𝐶𝑅 =
𝐶𝐼

𝑅𝐼
           (8) 

where RI is the consistency index of a random matrix of the same size (with randomly chosen 

judgments). 

The smaller the values of these indexes, the more consistent the judgements of the decision-maker 

are. A CR value of 0.10 or less is considered acceptable; otherwise, it is necessary to revise the 

preferential information introduced in the second phase (Athawale and Chakraborty, 2012). 

The last step concerns the calculation of the overall performance value for each alternative. 

Composite weights are determined by aggregating the weights of the elements throughout the 

hierarchy. An additive utility function is used, multiplying the weights along the path from the top of 

the hierarchy down to each alternative. The result is a normalized eigenvector with the overall 

weights of the alternatives (Saaty, 1980). Based on these values, the final ranking of the alternatives 

is obtained: the preferred alternative, in a maximization problem, is the one with the highest 

performance value (Kiciński and Solecka, 2018). 

It has to be highlighted that AHP is frequently used in combination with other MCDM methods (e.g., 

Saracoglu, 2015; Ameri et al., 2018): it provides a more organized structure to the problem and 

assists decision-makers in determining the weights for criteria and sub-criteria, which are 

subsequently used in the other method. 

Several software packages can be used to develop the AHP model. ExpertChoice, SuperDecisions, 

MakeItRational, etc. are among the most common (Kumar and Katoch, 2015). 
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1.4 Technique for Order Preference by Similarity to Ideal Solution 

TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) is a distance-based method, 

first introduced by Hwang and Yoon (1981). The basic idea is that the preferred alternative should 

have the shortest Euclidean distance from the ideal solution (A*) and the farthest distance from the 

negative-ideal solution (A−). 

The TOPSIS procedure consists of the following seven steps (Opricović and Tzeng, 2004). 

Step 1: Normalize the decision matrix. The normalized values rij are calculated using Equation (9): 

𝑟𝑖𝑗 =
𝑥𝑖𝑗

√∑ (𝑥𝑖𝑗)2
𝑛
𝑗=1

           (9) 

Step 2: Calculate the weighted normalized values as 𝑣𝑖𝑗 = 𝑤𝑗 ∙ 𝑟𝑖𝑗, where 𝑤𝑗 is the weight of the j-th 

criterion, assigned by decision-makers. 

Step 3: Calculate the ideal solution (A*) and the negative-ideal solution (A−): 

𝐴∗ = {𝑣1
∗, … , 𝑣𝑛

∗} = {(max
𝑗
𝑣𝑖𝑗 |𝑗 ∈ 𝐼

∗) , (min
𝑗
𝑣𝑖𝑗 |𝑗 ∈ I

−)}           (10) 

𝐴− = {𝑣1
−, … , 𝑣𝑛

−} = {(min
𝑗
𝑣𝑖𝑗 |𝑗 ∈ 𝐼

∗) , (max
𝑗
𝑣𝑖𝑗 |𝑗 ∈ I

−)}           (11) 

where I∗ is a set of benefit criteria and I− is a set of cost criteria. 

Step 4: Calculate the distance of each alternative from the ideal solution (𝐷𝑖
∗) and from the negative-

ideal solution (𝐷𝑖
−), using the n-dimensional Euclidean distance: 

𝐷𝑖
∗ = √∑ (𝑣𝑖𝑗 − 𝑣𝑗

∗)
2𝑛

𝑗=1
          (12) 

𝐷𝑖
− = √∑ (𝑣𝑖𝑗 − 𝑣𝑗

−)
2𝑛

𝑗=1
         (13) 

Step 5: Calculate the relative closeness of each alternative to the ideal solution (𝑅𝐶𝑖): 

𝑅𝐶𝑖 =
𝐷𝑖
−

(𝐷𝑖
∗ + 𝐷𝑖

−)
          (14) 

Step 6: Rank the alternatives according to the value of 𝑅𝐶𝑖 in descending order. The best alternative 

is the one with the highest 𝑅𝐶𝑖 (Wang et al., 2014). 
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1.5 VIKOR method 

VIKOR (Vlšekriterijumsko KOmpromisno Rangiranje – multicriteria optimization and compromise 

ranking) (Opricović, 1998) was developed to solve complex MCDM problems, characterized by 

conflicting and non-commensurable evaluation criteria. The method assumes that a compromise, 

based on mutual concessions made between the alternatives, can be accepted for solving the conflict. 

Therefore, it introduces the multi-criteria ranking index based on the closeness to the ideal solution. 

The compromise solution (one or more alternatives) is always feasible and it is the closest to the ideal 

solution (Vučijak et al., 2013). 

The Lp-metric, used in compromise programming method, is introduced to represent the relative 

distance of alternatives from the ideal solution. The following form of Lp-metric is considered: 

𝐿𝑝,𝑖 = {∑[𝑤𝑗((𝑥𝑖𝑗)𝑚𝑎𝑥 − 𝑥𝑖𝑗)/((𝑥𝑖𝑗)𝑚𝑎𝑥 − (𝑥𝑖𝑗)𝑚𝑖𝑛)]
𝑝

𝑛

𝑗=1

}

1/𝑝

, 1 ≤ 𝑝 ≤ ∞          (15) 

The compromise ranking algorithm VIKOR has the following steps (Opricović and Tzeng, 2004). 

Step 1: Determine the best (𝑓𝑗
∗) and the worst (𝑓𝑗

−) values of each criterion. If the j-th criterion 

represents a benefit, they can be calculated as follows: 

𝑓𝑗
∗ = max

𝑖
𝑥𝑖𝑗  , 𝑓𝑗

− = min
𝑖
𝑥𝑖𝑗            (16) 

Step 2: Calculate the values Si and Ri, using the following relations: 

𝑆𝑖 =∑
𝑤𝑗 ∙ (𝑓𝑗

∗ − 𝑥𝑖𝑗)

𝑓𝑗
∗ − 𝑓𝑗

−

𝑛

𝑗=1

           (17) 

𝑅𝑖 = max
𝑗
[𝑤𝑗 ∙ (𝑓𝑗

∗ − 𝑥𝑖𝑗)/(𝑓𝑗
∗ − 𝑓𝑗

−)]           (18) 

where 𝑤𝑗 are the weights of criteria, assigned by decision-makers. 

Step 3: Calculate the values Qi using Equation (19): 

𝑄𝑖 =
𝜐(𝑆𝑖 − 𝑆

∗)

𝑆− − 𝑆∗
+
(1 − 𝜐)(𝑅𝑖 − 𝑅

∗)

𝑅− − 𝑅∗
          (19) 

where: 

𝑆∗ = min
𝑖
𝑆𝑖  , 𝑆− = max

𝑖
𝑆𝑖           (20) 

𝑅∗ = min
𝑖
𝑅𝑖  , 𝑅− = max

𝑖
𝑅𝑖          (21) 

Coefficient 𝜐 is a weight for the strategy of “the majority of criteria”, while (1 − 𝜐) is the weight of 

“the individual regret”. The coefficient is defined by the decision-maker in the interval [0,1]. If 𝜐 >
0.5, more importance is given to satisfying most of the criteria, while using a 𝜐 value lower than 0.5, 



  Supplementary Material 

 8 

more weight is given to the second term of Q, i.e., to minimizing the individual differences of the 

alternatives, for each single criterion, from the ideal solution. These strategies can be compromised 

considering 𝜐 = 0.5 (Opricović and Tzeng, 2008). 

Step 4: Rank the alternatives, based on the values of S, R and Q, in decreasing order. Therefore, the 

results are three ranking lists. 

Step 5: Propose as a compromise solution the alternative 𝐴(1), which is the best ranked by the 

measure Q (i.e., the alternative with the minimum value of Q), if the following two conditions are 

satisfied: 

1) “Acceptable advantage”: 

𝑄(𝐴(2)) − 𝑄(𝐴(1)) ≥ 𝐷𝑄           (22) 

where 𝐴(2) is the alternative with the second position in the ranking by Q and 𝐷𝑄 = 1/(𝑚 − 1); 

2) “Acceptable stability in decision-making”: alternative 𝐴(1) must also be the best ranked by S 

or/and R. 

If one of the conditions is not satisfied, it is not possible to directly select the preferred solution, but a 

set of compromise solutions can be defined, which consists of: 

• Alternatives 𝐴(1) and 𝐴(2), if only the second condition is not satisfied, or 

• Alternatives 𝐴(1), 𝐴(2), … , 𝐴(𝑘), if the first condition is not satisfied, where 𝐴(𝑘) is the last 

alternative, in the ranking by Q, for which the relation 𝑄(𝐴(𝑘)) − 𝑄(𝐴(1)) < 𝐷𝑄 is still valid.  

Therefore, the results of the VIKOR method are three rankings (by Q, S and R), and the proposed 

compromise solution (one or a set) with the “advantage rate” (Opricović and Tzeng, 2004). 

1.6 ELECTRE III method 

ELECTRE (ELimination Et Choix Traduisant la RÉalité – elimination and choice expressing the 

reality) methods are a family of MCDM techniques developed in France in the 1960s by Bernard Roy 

(Roy, 1968). After the first version (ELECTRE I), new methods of this family were developed, 

aimed at solving different types of decision problems, like choice, ranking or sorting.  

ELECTRE III (Roy, 1978) is used to define a ranking of the alternatives. The novelty of this method 

is the introduction of pseudo criteria, instead of true criteria, to take into account the imperfect nature 

of the evaluation of alternatives. Therefore, three thresholds have to be introduced by the decision-

maker(s) for each criterion j: an indifference threshold qj, a preference threshold pj, and a veto 

threshold vj (Figueira et al., 2005). The following rule has to be considered: 𝑞𝑗 < 𝑝𝑗 < 𝑣𝑗 . 

The preference model is based on an outranking binary relation between alternatives, denoted as S, 

which means “at least as good as”. Considering two alternatives A1 and A2, the following outranking 

relations may occur (Figueira et al., 2005): 

• 𝐴1 𝑆 𝐴2 and not 𝐴2 𝑆 𝐴1: 𝐴1 𝑃 𝐴2, i.e., A1 is strictly preferred to A2 
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• 𝐴2 𝑆 𝐴1 and not 𝐴1 𝑆 𝐴2: 𝐴1 𝑃
− 𝐴2, i.e., A2 is strictly preferred to A1 or A1 is inversely 

preferred to A2 

• 𝐴1 𝑆 𝐴2 and 𝐴2 𝑆 𝐴1: 𝐴1 𝐼 𝐴2, i.e., A1 is indifferent to A2 

• Not 𝐴1 𝑆 𝐴2 and not 𝐴2 𝑆 𝐴1: 𝐴1 𝑅 𝐴2, i.e., A1 is incomparable to A2 

The outranking relation 𝐴1 𝑆 𝐴2 is true if a sufficient majority of criteria is in favor of it 

(concordance) and none of the criteria opposes too strongly (non-discordance or non-veto). 

Therefore, concordance and discordance are evaluated by using the following indexes (Figueira et al., 

2005): 

i) The concordance index 𝐶𝑗(𝐴𝑖, 𝐴𝑘) of the alternatives Ai and Ak, for each criterion j, is 

calculated through Equation (23): 

𝐶𝑗(𝐴𝑖 , 𝐴𝑘) =

{
 
 

 
 

             0                                𝑖𝑓 𝑔𝑗(𝐴𝑖) ≤ 𝑔𝑗(𝐴𝑘) − 𝑝𝑗
             1                                𝑖𝑓 𝑔𝑗(𝐴𝑖) > 𝑔𝑗(𝐴𝑘) − 𝑞𝑗

𝑝𝑗 − [𝑔𝑗(𝐴𝑘) − 𝑔𝑗(𝐴𝑖)]

𝑝𝑗 − 𝑞𝑗
                       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                  

        (23) 

where 𝑔𝑗(𝐴𝑖) and 𝑔𝑗(𝐴𝑘) represent the scores of alternative Ai and Ak, respectively, with respect 

to the j-th criterion. 

ii) The total or global concordance index 𝐶(𝐴𝑖, 𝐴𝑘) is obtained through Equation (24): 

𝐶(𝐴𝑖 , 𝐴𝑘) =
∑ 𝑤𝑗 ∙ 𝐶𝑗(𝐴𝑖 , 𝐴𝑘)
𝑛
𝑗=1

∑ 𝑤𝑗
𝑛
𝑗=1

          (24) 

where 𝑤𝑗 is the weight of each criterion, defined by decision-makers. 

iii) Then, the discordance index 𝐷𝑗(𝐴𝑖, 𝐴𝑘), for each criterion j, is defined as follows: 

𝐷𝑗(𝐴𝑖, 𝐴𝑘) =

{
 
 

 
 

           0                        𝑖𝑓 𝑔𝑗(𝐴𝑖) > 𝑔𝑗(𝐴𝑘) − 𝑝𝑗
            1                        𝑖𝑓 𝑔𝑗(𝐴𝑖) ≤ 𝑔𝑗(𝐴𝑘) − 𝑣𝑗

[𝑔𝑗(𝐴𝑘) − 𝑔𝑗(𝐴𝑖)] − 𝑝𝑗

𝑣𝑗 − 𝑝𝑗
                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                       

          (25) 

iv) Finally, the credibility index 𝜎(𝐴𝑖, 𝐴𝑘) is calculated as follows: 

𝜎(𝐴𝑖 , 𝐴𝑘) = 𝐶(𝐴𝑖 , 𝐴𝑘) ∏
1 −𝐷𝑗(𝐴𝑖, 𝐴𝑘)

1 − 𝐶(𝐴𝑖, 𝐴𝑘)
𝑗∈𝐽(𝐴𝑖,𝐴𝑘)

         (26) 

where 𝐽(𝐴𝑖 , 𝐴𝑘) = {𝑗 ∈ 𝐽 / 𝐷𝑗(𝐴𝑖, 𝐴𝑘) > 𝐶𝑗(𝐴𝑖, 𝐴𝑘)}. It can be noticed that, when 𝐷𝑗(𝐴𝑖 , 𝐴𝑘) = 1, 

𝜎(𝐴𝑖, 𝐴𝑘) = 0 since 𝐶(𝐴𝑖 , 𝐴𝑘) < 1. 

To obtain the complete ranking of the alternatives, ELECTRE III uses a procedure deriving two 

complete pre-orders of the alternatives. Two ranking procedures, named “distillations”, are applied: 

one classifies the alternatives in descending order, from the best to the worst (descending 
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distillation); the other one produces an ascending order, from the worst to the best alternative 

(ascending distillation). A final pre-order of the alternatives is then obtained as the intersection of the 

two complete pre-orders (Figueira et al., 2005). 

Different software packages can be used to perform the described procedures of ELECTRE III, like 

ELECTRE III-IV or Diviz.  

1.7 SHARE MCA method 

SHARE MCA (SHARE project, 2012) is the MCDM method initially adopted in Aosta Valley to 

fully describe every river situation. It is based on the same principle of the SAW method, i.e., the 

additive utility assumption. However, in this case, the decision problem is organized in a hierarchical 

structure, similar to the framework previously described for the AHP method (shown in 

Supplementary Figure 1). Every criterion is detailed by one or more sub-criteria (usually called 

“indicators”), which convey more specific quantitative information about the effect of different 

alternatives. This hierarchical framework used by SHARE MCA is named “decision tree”, where 

criteria and indicators represent the “branches” and the “leaves”, respectively (Mammoliti Mochet et 

al., 2012). 

A procedure of “hierarchical allocation of weights” is carried out in the SHARE MCA method. A 

weight is initially assigned to each indicator associated with a single criterion (i.e., for every group of 

leaves of the same branch). Afterwards, a vector of weights is allocated to criteria. Inside each group 

(i.e., for both the criteria and each group of indicators) the weights are normalized, i.e., their sum is 

equal to 1. Finally, the weight of each indicator (at the lowest level of the hierarchy) is obtained by 

multiplying its weight in the group of leaves and the weight of the corresponding criterion. The 

advantage of this kind of allocation is that the weights are assigned to homogeneous elements. 

Therefore, different groups of experts can work on the definition of weights linked to their own 

expertise. Indeed, weight allocation to each group of indicators is generally carried out by experts of 

the corresponding sector, while the allocation of weights to criteria is usually a political phase 

(Mammoliti Mochet et al., 2012). 

Moreover, to compare the different indicators in a multi-dimensional decision problem, the 

normalization process in SHARE MCA is performed by building, for each indicator, a mathematical 

function that assigns to each value of the indicator a corresponding dimensionless value ranging 

between 0 and 1. This kind of normalization is a subjective phase since different functions can be 

applied to the same indicator for different case studies. Usually, the normalization functions are 

elaborated, for each indicator, by the corresponding group of experts involved in the decision-making 

process, based on their expert judgement (Mammoliti Mochet et al., 2012). 

Therefore, to calculate the final performance value for the i-th alternative, P(Ai), Equation (27) is 

used: 

𝑃(𝐴𝑖) = ∑𝑤ℎ ∙ 𝑛𝑖ℎ

𝑙

ℎ=1

           (27) 
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where 𝑙 is the number of indicators 𝐼 = {𝐼ℎ|ℎ = 1,… , 𝑙}, 𝑤ℎ is the final weight of each indicator, and 

𝑛𝑖ℎ is the normalized score of alternative Ai with respect to indicator h, obtained through the 

normalization function. 

The best alternative, for a maximization decision problem, is the one with the highest P(Ai) value. 

The SHARE MCA method was initially implemented by using the SESAMO SHARE software 

(SHARE project, 2012), while more recently an online platform has been developed (SPARE project, 

2018). 

 

2 Kendall’s and Spearman’s non-parametric correlation tests and Borda aggregation 

method for the MCDM results comparison 

Kendall’s tau and Spearman’s rho correlation tests, as well as Borda aggregation method, were 

performed to compare the results obtained with the different MCDM methods (excluding VIKOR 

and ELECTRE III, which produce a different type of ranking). They are described in the following 

subsections. 

2.1 Kendall’s tau correlation coefficient 

Kendall’s tau coefficient (𝜏) represents the similarities between two compared rankings. It is 

calculated through Equation (28): 

𝜏 =
𝐶 − 𝐷

𝑚(𝑚 − 1)
2

           (28) 

where 𝐶 = {(𝑖, 𝑘) | (𝑥𝑖 < 𝑥𝑘 ∧ 𝑦𝑖 < 𝑦𝑘) ∨ (𝑥𝑖 > 𝑥𝑘 ∧ 𝑦𝑖 > 𝑦𝑘)} is the number of concordant pairs, 

𝐷 = {(𝑖, 𝑘) | (𝑥𝑖 < 𝑥𝑘 ∧ 𝑦𝑖 > 𝑦𝑘) ∨ (𝑥𝑖 > 𝑥𝑘 ∧ 𝑦𝑖 < 𝑦𝑘)} is the number of discordant pair (with 𝑥 

and 𝑦 representing two compared ranking methods, and i and k referring to two alternatives) and m is 

the number of alternatives. 

Values of 𝜏 range from –1, for 100% negative association (completely reversed rankings), and +1 for 

100% positive associations (perfect match). A value of zero indicates the absence of any association. 

Therefore, the higher Kendall’s tau coefficient, the better is the similarity between the two compared 

rankings (Chauvy et al., 2020). 

2.2 Spearman’s rho correlation coefficient 

Spearman’s rank correlation coefficient (ρ) describes the degree of linear relationship between two 

rankings. Conceptually, it is equal to Pearson’s linear correlation coefficient applied to the rankings 

of two measured variables, which in this case are two sets of alternatives (𝑥 and 𝑦) (Zamani-Sabzi et 

al., 2016). It is defined using Equation (29): 

𝜌 = 1 −
6 ∙ ∑ 𝑑𝑖

2𝑚
𝑖=1

𝑚(𝑚2 − 1)
          (29) 

where 𝑑𝑖 = 𝑥𝑖 − 𝑦𝑖 is the difference between the ranks of alternative i according to the two compared 

ranking methods. 
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The values of 𝜌 lie between –1, indicating a strong negative correlation between the two considered 

rankings, and +1, denoting a perfect match between the two rankings. When the correlation 

coefficient is close to 0, there is a weak relation between the rankings (Ceballos et al., 2016). 

2.3 Borda aggregation method 

Borda aggregation method (de Borda, 1781) determines a final ranking based on pairwise 

comparisons among ranked alternatives in each MCDM method. In the Borda count, for each 

ranking, a number of points is assigned to each alternative according to its position in the ranking and 

these points are summed to obtain the aggregated score of the alternative. In particular, the Borda 

sum for the alternative Ai (𝐵(𝐴𝑖)) can be calculated through Equation (30): 

𝐵(𝐴𝑖) = ∑𝑚− 𝜎𝑘(𝑖)

𝑅

𝑘=1

           (30) 

where R is the number of considered rankings (in this case the number of compared MCDM 

methods), m is the number of alternatives and 𝜎𝑘(𝑖) is the ordinal position that alternative Ai has in 

the ranking k (Dym et al., 2002). 

Therefore, for each ranking k, a value ranging between (𝑚 − 1) and 0 is assigned to each alternative 

(𝑚 − 1 to the best alternative and 0 to the last one). Finally, the alternatives are ranked based on the 

values of 𝐵(𝐴𝑖), in decreasing order (Ehteram et al. (2018)). 

 

3 Additional parameters defined in the case study for some MCDM methods 

As explained in the manuscript (subsection 2.7.1), some of the MCDM methods considered in the study 

require the definition of additional parameters. In this section, the parameters defined in the case study 

are presented. 

Supplementary Table 2, 3 and 4 show the results of the pairwise comparisons simulated by the authors, 

for each level of the hierarchy, based on the first scheme of weights considered in the paper, i.e., the 

weights defined by the stakeholders involved in the decision-making process. In the last column of 

each table, the weights of the compared elements calculated by the software are shown. It can be 

noticed that the inconsistency, directly calculated by the software, is always lower than 0.10 (see the 

last row); obviously, it is equal to 0 when only two elements are compared or when all the values are 

equal to 1. 

Analogous results can be found in Supplementary Table 5, where the pairwise comparison matrix of 

the criteria based on the second scheme of weights, i.e., equal weights (considered for the sensitivity 

analysis), is represented. Pairwise comparisons for economic sub-criteria and indicators do not vary 

with the second scheme of weights. 

Comparisons of alternatives with respect to each indicator are not illustrated because, as explained in 

the manuscript (subsection 2.7.1), they were performed through direct input, i.e., by introducing in the 

designated “direct input area” of the software the scores of the decision matrix shown in Table 3. 
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Supplementary Table 2. Simulated pairwise comparison between the criteria, for the first scheme of 

weights. The last column shows the criteria weights calculated by the SuperDecisions® software, as 

well as the inconsistency value (last row). 

 Energy 
Environment 

and fishing 
Landscape Economy Weights 

Energy 1 1/2 1/2 2 0.20 

Environment 

and Fishing 
2 1 1 2 0.33 

Landscape 2 1 1 2 0.33 

Economy 1/2 1/2 1/2 1 0.14 

Inconsistency:  0.023 

 

Supplementary Table 3. Simulated pairwise comparison between the economic sub-criteria, for the 

first scheme of weights. The last column shows the sub-criteria weights calculated by the 

SuperDecisions® software, as well as the inconsistency value (last row). 

 
HP producer 

income 

Community 

income 
Weights 

HP producer 

income 
1 1/8 0.11 

Community 

income 
8 1 0.89 

Inconsistency: 0 

 

Supplementary Table 4. Simulated pairwise comparison between the indicators quantifying the sub-

criterion Community income, for the first scheme of weights. The last column shows the indicators’ 

weights calculated by the SuperDecisions® software, as well as the inconsistency value (last row). 

 
Services 

(RCS) 

Financial 

income (RC) 

Criteria 

weights 

Services 

(RCS) 
1 1/9 0.10 

Financial 

income (RC) 
9 1 0.90 

Inconsistency: 0 
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Supplementary Table 5. Simulated pairwise comparison between the criteria for the second scheme 

of weights. The last column shows the criteria weights calculated by the SuperDecisions® software, as 

well as the inconsistency value (last row). 

 Energy 
Environment 

and fishing 
Landscape Economy Weights 

Energy 1 1 1 1 0.25 

Environment 

and Fishing 
1 1 1 1 0.25 

Landscape 1 1 1 1 0.25 

Economy 1 1 1 1 0.25 

Inconsistency: 0 

 

For ELECTRE III, on the contrary, three thresholds (indifference, preference and veto) have to be 

assigned to each criterion (named “indicator” in SHARE MCA). The thresholds defined for the case 

study are shown in Table 3 in the manuscript, but more information about the reasons leading to these 

values is provided in the following lines. As explained in the manuscript (subsection 2.7.1), the 

thresholds were evaluated by the authors with the support of some experts and stakeholders.  

• Energy Index (IEn): the indifference threshold (q) of IEn was calculated using a hydrologic 

series of the Graines torrent and considering the average amount of energy produced by the HP 

plant in 15 days. Indeed, 15 days of downtime for an HP plant during the year are generally 

considered usual by HP producers (due to non-predictable failures, required maintenance 

operations, etc.) and the consequent losses of energy production can be considered acceptable. 

The corresponding value of IEn was assessed as 3.6%, which was used as the value of q. The 

preference threshold (p), on the contrary, was evaluated by considering the difference, in terms 

of average annual energy production, between two flow release scenarios, one of which 

(corresponding to a higher HP production) received a net preference compared to the other one. 

The corresponding value of IEn was assessed as 18.65% and p was set equal to this value. 

Finally, the veto threshold (v) was established as 0.60, based on the classification used for the 

Energy Index (see Supplementary Figure 2 (a)): this value corresponds to the difference 

between two alternatives that are in two classes of energy considered strongly different (e.g., 

high and poor or good and bad). The alternative with the lower value of IEn would be 

considered unacceptable in terms of energy production. 

• Economic Index (IEc) and Financial income for the community (RC): the values of the 

thresholds for IEc (q = 3.5%, p = 22%, v = 0.60) and RC (q = 0.1%, p = 4.8%, v = 0.36) were 

obtained based on analogous considerations. 

• Habitat Integrity Index (IH): the definition of the indifference threshold for IH was more 

complex, since the procedure for the calculation of the index, according to the MesoHABSIM 

method, is based on different phases, including specific surveys of representative watercourse 

stretches at different discharges. Therefore, an expert was involved in the assessment of the 

level of uncertainty associated with this procedure, according to his large experience in 

applying the method, and the value of q was estimated as 0.06. The p value, on the contrary, 

was set equal to 0.20 based on the classification of the IH scores in five classes of quality (see 
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Supplementary Figure 2 (b)): a difference of 0.20 between two alternatives means that they are 

in two different (contiguous) classes of quality and a net preference has to be given to the 

alternative in the higher class. Finally, the veto threshold (v = 0.30) was defined based on 

several simulations. The value corresponds to a difference between two alternatives considered 

significant enough to judge the alternative with the lower score as unacceptable for the 

ecological status of the watercourse. This veto may seem too low compared to the total range 

of the indicator score (variable between 0 and 1). However, it has to be highlighted that, 

generally, the range of the IH scores calculated for the same watercourse stretch in different 

conditions is relatively small and a difference of IH equal to 0.3 can discriminate between two 

very different situations. 

• Landscape Protection Level (LPL): the thresholds assigned to LPL were based on similar 

considerations. The value of q was defined by estimating the level of uncertainty associated 

with the procedure for the calculation of the indicator, which can be generated by the 

quantification of the VEF parameter by the landscape experts. Considering that an error could 

occur mainly in the assessment of photos related to the months with lower discharges, in 

particular in summer (i.e., July and August), and taking into account the weights associated to 

these months in the case study (which were higher due to the increased presence of tourists in 

summer), this level of uncertainty, and therefore the value of q, was estimated as equal to 19.8. 

The values of p = 40 and v = 80 were based, again, on the classification of the LPL scores (see 

Supplementary Figure 2 (c)). A difference of more than 40 points between two alternatives 

means that they are in two different (contiguous) classes of landscape protection and a net 

preference has to be given to the alternative in the higher class. If the difference is higher than 

80 points, the alternative with the lower score would be judged as unacceptable by the landscape 

experts. 

• Services for the community (RCS): RCS is a true criterion since it is based on an ordinal scale. 

Therefore, q = p = 0. The selected value of v = 0.6 corresponds to the difference between two 

alternatives with a level of satisfaction, for the local community, considered strongly different, 

so that the lowest score would be judged as unacceptable. 

Furthermore, SHARE MCA requires the elaboration of a normalization function for each indicator. 

For the case study, these functions were defined during the decision-making process by the group of 

involved stakeholders. The normalization functions associated with the indicators IEn, IH, LPL and 

IEc are represented in Supplementary Figure 2, together with the corresponding classification of the 

indicator score. It can be noticed that all the functions are linear. For the indicators RCS and RC the 

normalization functions are not shown, since RCS is based on an ordinal scale, while RC is directly 

derived from the IEc values. 
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Supplementary Figure 2. Normalization function and classification of the scores for four indicators 

considered in the case study: (a) Energy Index (IEn), (b) Habitat Integrity Index (IH), (c) Landscape 

Protection Level (LPL), (d) Economic Index (IEc). 
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4 Intermediate results calculated for each considered MCDM method with the first scheme 

of weights 

4.1 Simple Additive Weighting (SAW) 

The normalized and weighted normalized decision matrices calculated for the SAW method, with the 

first set of weights, are represented in Supplementary Table 6 and 7. 

 

Supplementary Table 6. Normalized decision matrix computed for the SAW method. 

 IEn IH LPL IEc RCS RC 

ALT 0 0.000 1.000 0.997 0.000 0.000 0.000 

ALT 1 0.800 0.138 0.000 0.806 0.500 0.722 

ALT 2 0.350 0.690 0.810 0.333 0.500 0.250 

ALT 3 0.350 0.690 1.000 0.361 0.500 0.250 

ALT 4 0.500 0.552 0.736 0.500 0.500 0.389 

ALT 5 1.000 0.000 0.092 1.000 1.000 1.000 

ALT 6 0.950 0.172 0.104 0.972 1.000 0.944 

ALT 7 0.850 0.172 0.231 0.861 1.000 0.806 

ALT 8 0.600 0.483 0.508 0.583 0.500 0.472 

 

Supplementary Table 7. Weighted normalized decision matrix computed for the SAW method. 

 IEn IH LPL IEc RCS RC 

ALT 0 0.000 0.300 0.299 0.000 0.000 0.000 

ALT 1 0.200 0.041 0.000 0.012 0.004 0.092 

ALT 2 0.088 0.207 0.243 0.005 0.004 0.032 

ALT 3 0.088 0.207 0.300 0.005 0.004 0.032 

ALT 4 0.125 0.166 0.221 0.008 0.004 0.050 

ALT 5 0.250 0.000 0.028 0.015 0.007 0.128 

ALT 6 0.238 0.052 0.031 0.015 0.007 0.121 

ALT 7 0.213 0.052 0.069 0.013 0.007 0.103 

ALT 8 0.150 0.145 0.152 0.009 0.004 0.060 

 

 



  Supplementary Material 

 18 

4.2 Weighted Product Method (WPM) 

The results of the comparisons between alternatives according to the WPM method, based on the values 

𝑅(𝐴𝑘/𝐴𝑙), for the first scheme of weights, are shown in Supplementary Table 8. The values Pi 

presented in the manuscript, in Table 4, were calculated through Equation (5) (see subsection 1.2), 

whose results confirmed the ranking obtained through the comparisons shown in the following table. 

 

Supplementary Table 8. Comparisons between each pair of alternatives for the WPM methods, based 

on the ratio R(ALTk/ALTi). The values of R higher than 1 are highlighted in bold type. 

 R Comparisons 

R(ALT 0/ALT 1) 1.240 ALT 0 ≻ ALT 1 

R(ALT 0/ALT 2) 0.963 ALT 2 ≻ ALT 0 

R(ALT 0/ALT 3) 0.925 ALT 3 ≻ ALT 0 

R(ALT 0/ALT 4) 0.957 ALT 4 ≻ ALT 0 

R(ALT 0/ALT 5) 1.154 ALT 0 ≻ ALT 5 

R(ALT 0/ALT 6) 1.122 ALT 0 ≻ ALT 6 

R(ALT 0/ALT 7) 1.085 ALT 0 ≻ ALT 7 

R(ALT 0/ALT 8) 1.004 ALT 0 ≻ ALT 8 

R(ALT 1/ALT 2) 0.777 ALT 2 ≻ ALT 1 

R(ALT 1/ALT 3) 0.746 ALT 3 ≻ ALT 1 

R(ALT 1/ALT 4) 0.772 ALT 4 ≻ ALT 1 

R(ALT 1/ALT 5) 0.931 ALT 5 ≻ ALT 1 

R(ALT 1/ALT 6) 0.905 ALT 6 ≻ ALT 1 

R(ALT 1/ALT 7) 0.875 ALT 7 ≻ ALT 1 

R(ALT 1/ALT 8) 0.810 ALT 8 ≻ ALT 1 

R(ALT 2/ALT 3) 0.960 ALT 3 ≻ ALT 2 

R(ALT 2/ALT 4) 0.994 ALT 4 ≻ ALT 2 

R(ALT 2/ALT 5) 1.199 ALT 2 ≻ ALT 5 

R(ALT 2/ALT 6) 1.165 ALT 2 ≻ ALT 6 

R(ALT 2/ALT 7) 1.126 ALT 2 ≻ ALT 7 

R(ALT 2/ALT 8) 1.043 ALT 2 ≻ ALT 8 

R(ALT 3/ALT 4) 1.035 ALT 3 ≻ ALT 4 

R(ALT 3/ALT 5) 1.248 ALT 3 ≻ ALT 5 

R(ALT 3/ALT 6) 1.214 ALT 3 ≻ ALT 6 

R(ALT 3/ALT 7) 1.173 ALT 3 ≻ ALT 7 

R(ALT 3/ALT 8) 1.086 ALT 3 ≻ ALT 8 
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Supplementary Table 8. Continued. 

 R Comparisons 

R(ALT 4/ALT 5) 1.206 ALT 4 ≻ ALT 5 

R(ALT 4/ALT 6) 1.172 ALT 4 ≻ ALT 6 

R(ALT 4/ALT 7) 1.133 ALT 4 ≻ ALT 7 

R(ALT 4/ALT 8) 1.049 ALT 4 ≻ ALT 8 

R(ALT 5/ALT 6) 0.972 ALT 6 ≻ ALT 5 

R(ALT 5/ALT 7) 0.940 ALT 7 ≻ ALT 5 

R(ALT 5/ALT 8) 0.870 ALT 8 ≻ ALT 5 

R(ALT 6/ALT 7) 0.967 ALT 7 ≻ ALT 6 

R(ALT 6/ALT 8) 0.895 ALT 8 ≻ ALT 6 

R(ALT 7/ALT 8) 0.926 ALT 8 ≻ ALT 7 

 

4.3 Analytic Hierarchy Process (AHP) 

The results of the pairwise comparisons performed by the authors are shown in Supplementary Table 

2, 3 and 4. Supplementary Table 9 presents the normalized scores and the aggregated weighting factors 

obtained for the six indicators through the SuperDecisions® software, for the first scheme of weights. 

 

Supplementary Table 9. Normalized decision matrix according to the AHP method and aggregated 

weighting factors calculated for the indicators by the software SuperDecisions® (second row). 

 IEn IH LPL IEc RCS RC 

Global weights 0.064 0.105 0.105 0.005 0.004 0.036 

ALT 0 0.093 0.143 0.166 0.065 0.069 0.038 

ALT 1 0.117 0.095 0.056 0.127 0.103 0.136 

ALT 2 0.104 0.125 0.146 0.091 0.103 0.072 

ALT 3 0.104 0.125 0.167 0.093 0.103 0.072 

ALT 4 0.108 0.118 0.137 0.103 0.103 0.091 

ALT 5 0.123 0.087 0.066 0.141 0.138 0.174 

ALT 6 0.121 0.097 0.068 0.139 0.138 0.167 

ALT 7 0.119 0.097 0.082 0.131 0.138 0.148 

ALT 8 0.111 0.114 0.112 0.110 0.103 0.102 
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4.4 Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) 

Supplementary Table 10 and 11 show the normalized and weighted normalized decision matrices 

calculated for the TOPSIS method, with the first scheme of weights. The ideal solution (A*) and the 

negative-ideal solution (A−) are shown in Supplementary Table 12. 

 

Supplementary Table 10. Normalized decision matrix calculated for the TOPSIS method. 

 IEn IH LPL IEc RCS RC 

ALT 0 0.279 0.423 0.467 0.192 0.203 0.105 

ALT 1 0.350 0.280 0.158 0.371 0.305 0.380 

ALT 2 0.310 0.372 0.409 0.266 0.305 0.200 

ALT 3 0.310 0.372 0.468 0.272 0.305 0.200 

ALT 4 0.323 0.349 0.386 0.303 0.305 0.253 

ALT 5 0.368 0.257 0.187 0.414 0.406 0.485 

ALT 6 0.363 0.286 0.190 0.408 0.406 0.464 

ALT 7 0.354 0.286 0.229 0.383 0.406 0.411 

ALT 8 0.332 0.338 0.315 0.322 0.305 0.285 

 

Supplementary Table 11. Weighted normalized decision matrix calculated for the TOPSIS method. 

 IEn IH LPL IEc RCS RC 

ALT 0 0.070 0.127 0.140 0.003 0.001 0.013 

ALT 1 0.087 0.084 0.047 0.006 0.002 0.049 

ALT 2 0.078 0.112 0.123 0.004 0.002 0.026 

ALT 3 0.078 0.112 0.140 0.004 0.002 0.026 

ALT 4 0.081 0.105 0.116 0.005 0.002 0.032 

ALT 5 0.092 0.077 0.056 0.006 0.003 0.062 

ALT 6 0.091 0.086 0.057 0.006 0.003 0.059 

ALT 7 0.089 0.086 0.069 0.006 0.003 0.053 

ALT 8 0.083 0.101 0.095 0.005 0.002 0.036 
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Supplementary Table 12. Ideal solution (A*) and the negative-ideal solution (A−) calculated for the 

TOPSIS method. 

 IEn IH LPL IEc RCS RC 

A* 0.092 0.127 0.140 0.006 0.003 0.062 

A− 0.070 0.077 0.047 0.003 0.001 0.013 

 

4.5 VIKOR 

The following values were calculated for the VIKOR method, for the first scheme of weights: 𝑆∗ = 

0.36; 𝑆− = 0.65; 𝑅∗ = 0.13; 𝑅− = 0.30. The check for the condition of “acceptable advantage” is 

represented in  

Supplementary Table 13: the difference between the second, third and fourth ranked alternatives by Q 

(ALT 4, ALT 2 and ALT 8, respectively) and the best alternative by Q (ALT 3) were compared with 

the value DQ = 0.125 to define the set of compromise solutions (first rows of the table). When the 

difference was below the value DQ, the alternatives were included in the set of compromise solutions 

(rank = 1), in addition to ALT 3. An analogous check was made for the following alternatives to 

establish the complete final ranking. 

 

Supplementary Table 13. Check for the condition of “acceptable advantage” in VIKOR, with ALT(1) 
= ALT 3 and DQ = 0.125. The values highlighted in red denote that there is not an “acceptable 

advantage” and, therefore, the alternative is ranked in the same position as the previous one. 

 𝐐(𝐀𝐋𝐓𝐢) − 𝐐(𝐀𝐋𝐓
(𝟏)) Check Rank of 𝐀𝐋𝐓𝐢 

Q(ALT 4) – Q(ALT 3) 0.026 < DQ 1 

Q(ALT 2) – Q(ALT 3) 0.100 < DQ 1 

Q(ALT 8) – Q(ALT 3) 0.180 > DQ 2 

 𝐐(𝐀𝐋𝐓𝐢) − 𝐐(𝐀𝐋𝐓 𝟖) Check Rank of 𝐀𝐋𝐓𝐢 

Q(ALT 0) – Q(ALT 8) 0.148 > DQ 3 

 𝐐(𝐀𝐋𝐓𝐢) − 𝐐(𝐀𝐋𝐓 𝟎) Check Rank of 𝐀𝐋𝐓𝐢 

Q(ALT 7) – Q(ALT 0) 0.244 > DQ 4 

 𝐐(𝐀𝐋𝐓𝐢) − 𝐐(𝐀𝐋𝐓 𝟕) Check Rank of 𝐀𝐋𝐓𝐢 

Q(ALT 6) – Q(ALT 7) 0.051 < DQ 4 

Q(ALT 5) – Q(ALT 7) 0.206 > DQ 5 

 𝐐(𝐀𝐋𝐓𝐢) − 𝐐(𝐀𝐋𝐓 𝟓) Check Rank of 𝐀𝐋𝐓𝐢 

Q(ALT 1) – Q(ALT 5) 0.137 > DQ 6 
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4.6 ELECTRE III 

Supplementary Table 14, 15 and 16 present the concordance matrix, the discordance matrices for each 

indicator (also named “criterion” in the previous references to ELECTRE III) and the final credibility 

matrix calculated by the J-ELECTRE software, for the first scheme of weights. 

 

Supplementary Table 14. Concordance matrix calculated by the J-ELECTRE software. 

 ALT 0 ALT 1 ALT 2 ALT 3 ALT 4 ALT 5 ALT 6 ALT 7 ALT 8 

ALT 0 0 0.643 0.801 0.801 0.747 0.600 0.600 0.627 0.711 

ALT 1 0.400 0 0.486 0.486 0.571 0.856 0.863 0.914 0.717 

ALT 2 0.936 0.771 0 1.000 0.870 0.693 0.710 0.746 0.844 

ALT 3 0.936 0.772 1.000 0 0.871 0.693 0.710 0.747 0.845 

ALT 4 0.850 0.826 1.000 1.000 0 0.747 0.764 0.801 0.921 

ALT 5 0.400 1.000 0.400 0.400 0.486 0 1.000 1.000 0.720 

ALT 6 0.400 1.000 0.507 0.507 0.593 0.948 0 1.000 0.839 

ALT 7 0.400 1.000 0.540 0.507 0.697 0.871 0.872 0 0.936 

ALT 8 0.627 0.862 1.000 0.817 1.000 0.782 0.800 0.836 0 

 

Supplementary Table 15. Discordance matrices calculated for each indicator by the J-ELECTRE 

software. 

 IEn 

 ALT 0 ALT 1 ALT 2 ALT 3 ALT 4 ALT 5 ALT 6 ALT 7 ALT 8 

ALT 0 0 0 0 0 0 0.034 0.010 0 0 

ALT 1 0 0 0 0 0 0 0 0 0 

ALT 2 0 0 0 0 0 0 0 0 0 

ALT 3 0 0 0 0 0 0 0 0 0 

ALT 4 0 0 0 0 0 0 0 0 0 

ALT 5 0 0 0 0 0 0 0 0 0 

ALT 6 0 0 0 0 0 0 0 0 0 

ALT 7 0 0 0 0 0 0 0 0 0 

ALT 8 0 0 0 0 0 0 0 0 0 
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Supplementary Table 15. Continued. 

 IH 

 ALT 0 ALT 1 ALT 2 ALT 3 ALT 4 ALT 5 ALT 6 ALT 7 ALT 8 

ALT 0 0 0 0 0 0 0 0 0 0 

ALT 1 0.500 0 0 0 0 0 0 0 0 

ALT 2 0 0 0 0 0 0 0 0 0 

ALT 3 0 0 0 0 0 0 0 0 0 

ALT 4 0 0 0 0 0 0 0 0 0 

ALT 5 0.900 0 0 0 0 0 0 0 0 

ALT 6 0.400 0 0 0 0 0 0 0 0 

ALT 7 0.400 0 0 0 0 0 0 0 0 

ALT 8 0 0 0 0 0 0 0 0 0 

 LPL 

 ALT 0 ALT 1 ALT 2 ALT 3 ALT 4 ALT 5 ALT 6 ALT 7 ALT 8 

ALT 0 0 0 0 0 0 0 0 0 0 

ALT 1 0.625 0 0.320 0.630 0.200 0 0 0 0 

ALT 2 0 0 0 0 0 0 0 0 0 

ALT 3 0 0 0 0 0 0 0 0 0 

ALT 4 0 0 0 0 0 0 0 0 0 

ALT 5 0.475 0 0.170 0.480 0.050 0 0 0 0 

ALT 6 0.455 0 0.150 0.460 0.030 0 0 0 0 

ALT 7 0.250 0 0 0.255 0 0 0 0 0 

ALT 8 0 0 0 0 0 0 0 0 0 

 IEc 

 ALT 0 ALT 1 ALT 2 ALT 3 ALT 4 ALT 5 ALT 6 ALT 7 ALT 8 

ALT 0 0 0.184 0 0 0 0.368 0.342 0.237 0 

ALT 1 0 0 0 0 0 0 0 0 0 

ALT 2 0 0 0 0 0 0.053 0.026 0 0 

ALT 3 0 0 0 0 0 0.026 0 0 0 

ALT 4 0 0 0 0 0 0 0 0 0 

ALT 5 0 0 0 0 0 0 0 0 0 

ALT 6 0 0 0 0 0 0 0 0 0 

ALT 7 0 0 0 0 0 0 0 0 0 

ALT 8 0 0 0 0 0 0 0 0 0 
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Supplementary Table 15. Continued. 

 RCS 

 ALT 0 ALT 1 ALT 2 ALT 3 ALT 4 ALT 5 ALT 6 ALT 7 ALT 8 

ALT 0 0 0.333 0.333 0.333 0.333 0.667 0.667 0.667 0.333 

ALT 1 0 0 0 0 0 0.333 0.333 0.333 0 

ALT 2 0 0 0 0 0 0.333 0.333 0.333 0 

ALT 3 0 0 0 0 0 0.333 0.333 0.333 0 

ALT 4 0 0 0 0 0 0.333 0.333 0.333 0 

ALT 5 0 0 0 0 0 0 0 0 0 

ALT 6 0 0 0 0 0 0 0 0 0 

ALT 7 0 0 0 0 0 0 0 0 0 

ALT 8 0 0 0 0 0 0.333 0.333 0.333 0 

 RC 

 ALT 0 ALT 1 ALT 2 ALT 3 ALT 4 ALT 5 ALT 6 ALT 7 ALT 8 

ALT 0 0 0.680 0.135 0.135 0.295 1.000 0.936 0.776 0.391 

ALT 1 0 0 0 0 0 0.167 0.103 0 0 

ALT 2 0 0.391 0 0 0.006 0.712 0.647 0.487 0.103 

ALT 3 0 0.391 0 0 0.006 0.712 0.647 0.487 0.103 

ALT 4 0 0.231 0 0 0 0.551 0.487 0.327 0 

ALT 5 0 0 0 0 0 0 0 0 0 

ALT 6 0 0 0 0 0 0 0 0 0 

ALT 7 0 0 0 0 0 0.071 0.006 0 0 

ALT 8 0 0.135 0 0 0 0.455 0.391 0.231 0 

 

Supplementary Table 16. Credibility matrix calculated by the J-ELECTRE software. 

 ALT 0 ALT 1 ALT 2 ALT 3 ALT 4 ALT 5 ALT 6 ALT 7 ALT 8 

ALT 0 0 0.578 0.801 0.801 0.747 0.000 0.080 0.336 0.711 

ALT 1 0.208 0 0.486 0.349 0.571 0.856 0.863 0.914 0.717 

ALT 2 0.936 0.771 0 1.000 0.870 0.652 0.710 0.746 0.844 

ALT 3 0.936 0.772 1.000 0 0.871 0.652 0.710 0.747 0.845 

ALT 4 0.850 0.826 1.000 1.000 0 0.747 0.764 0.801 0.921 

ALT 5 0.058 1.000 0.400 0.347 0.486 0 1.000 1.000 0.720 

ALT 6 0.363 1.000 0.507 0.507 0.593 0.948 0 1.000 0.839 

ALT 7 0.400 1.000 0.540 0.507 0.697 0.871 0.872 0 0.936 

ALT 8 0.627 0.862 1.000 0.817 1.000 0.782 0.800 0.836 0 
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4.7 SHARE MCA 

The normalized and weighted normalized decision matrices calculated for the SHARE MCA method, 

with the first set of weights, are shown in Supplementary Table 17 and 18. 

 

Supplementary Table 17. Normalized decision matrix calculated by the software SESAMO SHARE. 

 IEn IH LPL IEc RCS RC 

ALT 0 0.630 0.740 0.596 0.310 0.400 0.100 

ALT 1 0.790 0.490 0.202 0.600 0.600 0.360 

ALT 2 0.700 0.650 0.522 0.430 0.600 0.190 

ALT 3 0.700 0.650 0.597 0.440 0.600 0.190 

ALT 4 0.730 0.610 0.493 0.490 0.600 0.240 

ALT 5 0.830 0.450 0.238 0.670 0.800 0.460 

ALT 6 0.820 0.500 0.243 0.660 0.800 0.440 

ALT 7 0.800 0.500 0.293 0.620 0.800 0.390 

ALT 8 0.750 0.590 0.403 0.520 0.600 0.270 

 

Supplementary Table 18. Weighted normalized decision matrix calculated by the software SESAMO 

SHARE. 

 IEn IH LPL IEc RCS RC 

ALT 0 0.158 0.222 0.179 0.005 0.003 0.013 

ALT 1 0.198 0.147 0.061 0.009 0.004 0.046 

ALT 2 0.175 0.195 0.157 0.006 0.004 0.024 

ALT 3 0.175 0.195 0.179 0.007 0.004 0.024 

ALT 4 0.183 0.183 0.148 0.007 0.004 0.031 

ALT 5 0.208 0.135 0.071 0.010 0.006 0.059 

ALT 6 0.205 0.150 0.073 0.010 0.006 0.056 

ALT 7 0.200 0.150 0.088 0.009 0.006 0.050 

ALT 8 0.188 0.177 0.121 0.008 0.004 0.035 
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5 Results of the Borda aggregation method 

As described in the manuscript (subsection 2.4), the Borda method was used, in addition to the non-

parametric correlation tests, to compare the results of the different MCDM methods. The calculation 

of the aggregated order through the Borda technique, for the first scheme of weights, is shown in 

Supplementary Table 19. The correlations between each method and the Borda order are illustrated in 

Supplementary Figure 3. It can be noticed that the Borda ranking is exactly the same as the order 

generated by SHARE MCA, AHP and TOPSIS. The results of SAW and WPM, on the contrary, 

slightly differ from the Borda ranking (R2 = 0.97 and R2 = 0.87, respectively), with two ranks switched 

(ranks 6 and 7 in SAW and ranks 4 and 2 in WPM). 

 

Supplementary Table 19. Scores calculated based on the Borda method for each MCDM method, 

Borda sum and final aggregated ranking, for the first scheme of weights. 

 
SHARE 

MCA 
SAW WPM AHP TOPSIS 

Borda 

sum 

Borda 

ranking 

ALT 0 7 7 7 7 5 33 2 

ALT 1 0 0 0 0 0 0 9 

ALT 2 6 6 6 6 6 30 3 

ALT 3 8 8 8 8 8 40 1 

ALT 4 5 5 5 5 7 27 4 

ALT 5 1 1 1 1 1 5 8 

ALT 6 2 3 2 2 2 11 7 

ALT 7 3 2 3 3 3 14 6 

ALT 8 4 4 4 4 4 20 5 
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Supplementary Figure 3. Correlation between (a) SHARE MCA and Borda, (b) SAW and Borda, 

(c) WPM and Borda, (d) AHP and Borda, (e) TOPSIS and Borda, for the first scheme of weights. 

The values from 1 to 9 correspond to the ranks. 
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The same results, for the second scheme of weights, are presented in Supplementary Table 20 and 

Supplementary Figure 4. Looking at the graphs shown in Supplementary Figure 4, it can be noticed 

that SAW is the method characterized by the highest correlation with the Borda ranking (R2 > 0.9). 

AHP and TOPSIS are also highly correlated with the Borda aggregated order (R2 > 0.8, with major 

differences in the lowest part of the ranking). On the contrary, the results of SHARE MCA and WPM 

significantly differ from the Borda ranking (R2 < 0.7), even if the first two ranked alternatives and the 

last one are always the same (also the third alternative does not change in SHARE MCA). 

 

Supplementary Table 20. Scores calculated through the Borda method for each MCDM method, 

Borda sum and final aggregated ranking, for the second scheme of weights. 

 
SHARE 

MCA 
SAW WPM AHP TOPSIS 

Borda 

sum 

Borda 

ranking 

ALT 0 5 1 3 4 1 14 7 

ALT 1 0 0 0 0 0 0 9 

ALT 2 6 5 6 6 5 28 3 

ALT 3 8 8 8 8 8 40 1 

ALT 4 7 7 7 7 7 35 2 

ALT 5 1 4 5 3 2 15 5.5 

ALT 6 3 6 4 5 3 21 4 

ALT 7 2 2 2 2 4 12 8 

ALT 8 4 3 1 1 6 15 5.5 
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Supplementary Figure 4. Correlation between (a) SHARE MCA and Borda, (b) SAW and Borda, 

(c) WPM and Borda, (d) AHP and Borda, (e) TOPSIS and Borda, for the second scheme of weights. 

The values from 1 to 9 correspond to the ranks. 
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6 Comparative analyses of the different MCDM methods’ results obtained with the second 

scheme of weights 

Kendall’s tau and Spearman’s rho correlation tests were performed to analyze the correlation among 

the obtained rankings also with the new scheme of weights (shown in Table 6 in the manuscript). 

VIKOR and ELECTRE III were excluded because they generate a different type of result (i.e., three 

rankings – by Q, S and R – and a proposed set of compromise solutions for VIKOR and a final pre-

order of the alternatives characterized, in this case, by a relation of indifference between two 

alternatives for ELECTRE III. The results of the correlation tests for the other five MCDM methods 

are shown in Supplementary Table 21. 

 

Supplementary Table 21. Numerical results of Kendall’s tau and Spearman’s rho correlation tests 

between the compared methods (excluding VIKOR and ELECTRE III), considering the second scheme 

of weights. 

Kendall’s tau coefficient 

 
SHARE 

MCA 
SAW WPM AHP TOPSIS 

SHARE 

MCA 
1.000 0.556 0.667 0.722 0.611 

SAW  1.000 0.667 0.722 0.722 

WPM   1.000 0.500* 0.500* 

AHP    1.000 0.889 

TOPSIS     1.000 

Spearman’s rho coefficient 

 
SHARE 

MCA 
SAW WPM AHP TOPSIS 

SHARE 

MCA 
1.000 0.700 0.783 0.850 0.750 

SAW  1.000 0.783 0.867 0.883 

WPM   1.000 0.633 0.633 

AHP    1.000 0.950 

TOPSIS     1.000 

* Not significant correlation value (equal to the critical value) 

 

It can be noticed that the results of both the statistic tests are significantly lower than the values 

calculated considering the first scheme of weights (shown in Table 5 in the manuscript). The most 

correlated MCDM methods are AHP and TOPSIS (𝜏 = 0.889 and 𝜌 = 0.950), while WPM has the 
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lowest correlation with the other methods (in particular with AHP and TOPSIS: 𝜏 = 0.5 and 𝜌 =
0.633).  

It has to be highlighted that the critical value of 𝜏 in this study (i.e., for N = 9, where N is the number 

of ranks) is 0.5 for 𝛼 = 0.05. In other words, the value of 𝜏 should be higher than 0.5 to be significant 

with 95% certainty. Therefore, the correlation values of WPM with AHP and TOPSIS are not 

significant according to the Kendall’s tau test, but they are significant according to the Spearman’s rho 

tests since the critical value of 𝜌 (for N = 9 and 𝛼 = 0.05) is 0.6. 

Moreover, looking at the final rankings of alternatives generated by these five MCDM methods 

(presented in Table 7 in the manuscript), it can be noticed that the first two ranked alternatives are 

always the same (i.e., ALT 3 in the first rank and ALT 4 in the second rank), while ALT 2 is always 

in the third (for SHARE MCA, AHP and TOPSIS) or fourth position of the ranking (for SAW and 

WPM). In addition, ALT 1 is always the last ranked alternative and ALT 7 ranks seventh in all the 

rankings with the exception of WPM. For the other alternatives, the position in the rankings obtained 

with the different methods varies consistently. These differences can also be observed in 

Supplementary Figure 5 (b), which compares the rankings produced by the five mentioned MCDM 

methods, for the second scheme of weights, in a radar graph. Compared with the results obtained using 

the first set of weights, shown in Supplementary Figure 5 (a) and highly correlated, the differences are 

more evident, even if the first (ALT 3) and the last alternatives (ALT 0) remain always the same. 
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Supplementary Figure 5. Radar graphs comparing the different rankings obtained for SHARE 

MCA, SAW, WPM, AHP and TOPSIS (a) for the first and (b) for the second scheme of weights. 

 

Furthermore, the best-ranked alternatives, i.e., ALT 3 and ALT 4, are also included in the set of 

compromise solutions proposed by VIKOR, in addition to ALT 8, which, on the contrary, is usually 

classified in the lower part of the ranking by the other methods (but it is ranked third according to 

WPM). Moreover, considering the ranking by Q calculated in VIKOR, the order is almost the same as 

the one generated by WPM: only ALT 3 and ALT 4 are switched between the first and the second rank 

and ALT 6 and ALT 7 are switched between the fifth and the sixth positions. 
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The final ranking produced by ELECTRE III, on the contrary, is significantly different from the results 

of the other methods. The first classified alternative is ALT 4, as in VIKOR, but it is followed by ALT 

5 and ALT 6 (indifferent), which, in contrast, are ranked in the middle or lower part of the ranking by 

the other methods. In addition, ALT 2 only ranks sixth in ELECTRE III, while it is third or fourth 

according to all the other methods. Also, differently from the other methods, ALT 1 is not the last 

ranked alternative: it is classified second to last, followed by ALT 0. 

 

7 Discrimination of the results for the different methods 

A further analysis performed to compare the results of the seven considered MCDM methods was the 

evaluation of the difference between the alternatives within the produced ranking, i.e., the distance of 

each alternative from the best-ranked one. In particular, two percentage difference indexes were 

calculated, based on the performance values associated with the alternatives: DBW considered the 

distance between the best and the worst-ranked alternatives, while DFS evaluated the distance 

between the first and the second positions of the ranking. The results of these two indexes, for both 

the considered schemes of weights, are shown in Supplementary Table 22. 

 

Supplementary Table 22. Discrimination of the results obtained with the first and the second scheme 

of weights for the considered methods (excluding ELECTRE III, which does not provide a performance 

value of the alternatives): DBW = percentage difference between the best and the worst-ranked 

alternatives; DFS = percentage difference between the first and the second positions of the ranking. 

First scheme of weights 

 
SHARE 

MCA 
SAW WPM AHP TOPSIS VIKOR 

DBW (%) -20.51% -45.00% -25.44% -28.27% -60.32% 1081.54% 

DFS (%) -0.97% -5.70% -3.41% -0.88% -5.80% 30.74% 

Second scheme of weights 

 
SHARE 

MCA 
SAW WPM AHP TOPSIS VIKOR 

DBW (%) -13.92% -28.25% -15.39% -15.34% -28.01% 926.20% 

DFS (%) -3.04% -5.16% -0.08% -3.40% -4.28% 41.10% 

 

Looking at the table, it can be noticed that high discrimination of the results is ensured by TOPSIS 

and SAW, especially considering the first scheme of weights. SHARE MCA and AHP (with the first 

scheme of weights) and WPM (with the second set of weights), on the contrary, show relatively low 

discrimination of the results, with very close performance values for the first and the second-ranked 

alternatives.  

The indexes presented for VIKOR were calculated considering the ranking by Q (from which the 

final ranking of the alternatives was obtained). Differently from the other methods, in this case, the 
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alternatives are ranked in decreasing order (indeed, the best alternative is the one with the minimum 

value of Q): for this reason both the indexes are positive, since there is an increase between the first 

ranked alternative (by Q) and the following ones. However, this method shows very high 

discrimination of the results (for example, the percentage increase between the first and the second 

alternatives is higher than 30%). Moreover, it has to be highlighted that the final step of VIKOR 

already includes a check for the condition of “acceptable advantage” to define the compromise 

solution(s), considering the value 𝐷𝑄 = 1/(𝑚 − 1): if the first ranked alternative (by Q) does not 

have an “acceptable advantage” on the following one, all the alternatives for which the relation 

𝑄(𝐴(𝑘)) − 𝑄(𝐴(1)) < 𝐷𝑄 is valid are included in the set of compromise solutions (together with the 

first alternative). 

Finally, the indexes were not calculated for ELECTRE III, since the method does not provide a 

performance value for the alternatives, but only an ordinal rank. However, it has to be noticed that the 

final pre-order of ELECTRE III identifies the presence of alternatives which resulted indifferent after 

the procedure of descending and ascending distillations and assigns them the same rank. 

 

8 Strengths and weaknesses of the seven considered MCDM methods 

Based on the comparative evaluation of the considered MCDM methods (summarized in Table 8 in the 

manuscript), the main observed strengths and weaknesses of each method were collected. They are 

presented in Supplementary Table 23. 

 

Supplementary Table 23. Summary of the strengths and weaknesses of the different MCDM methods. 

 Strengths Limitations 

SHARE MCA 

- Simple procedure, based on the same 

additive principle of SAW; 

- Quite easy to understand, also for 

practitioners; 

- The hierarchical framework 

(“decision tree”) allows the 

breakdown of even complex problems 

and facilitated the allocation of 

weights; 

- Results are aligned with expert-based 

assessment; 

- No need for complex computer 

programs. 

- Need for a set of normalization 

functions, one for each indicator; 

- Subjectivity linked to the selection of 

the normalization functions. 
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Supplementary Table 23. Continued. 

 Strengths Limitations 

SAW 

- Simple calculation; 

- No need for complex computer 

programs1, 2; 

- Intuitive to decision-makers and 

well-known by practitioners 3; 

- Possibility to compensate among 

criteria 1. 

- Difficulties when it is applied to 

multi-dimensional MCDM problems: 

need for normalization 4; 

- Results do not always reflect the real 

situation 1. 

WPM 

- Easy to use with multi-dimensional 

MCDM problems 4; 

- The different units of measure are 

automatically removed by ratios 3, 5; 

- No need for normalization (if all the 

criteria are of the same type, i.e., 

benefit or cost) 5; 

- No need for complex computer 

programs. 

- “Practitioner-unattractive” 

mathematical concept (even if the 

formulation is simple) 3; 

- Possible difficulties when some 

alternatives have very different scores 

for a criterion (the ranking of 

alternatives tends to be too much 

conditioned by that criterion 5. 

 

AHP 

- The hierarchy structure can fit 

different sized problems 1; 

- It allows the breakdown of complex 

problems 6; 

- Pairwise comparisons facilitate the 

assignment of preferences by decision-

makers 7; 

- Pairwise comparisons allow 

managing both qualitative and 

quantitative data 8. 

- High number of pairwise 

comparisons required for large scale 

problems 7; 

- Possible inconsistencies of the 

judgements provided by the decision-

maker(s) 1; 

- Restrictions to the number of criteria 

(and alternatives) to be compared, to 

avoid inconsistency of judgements 

(less than nine) 9; 

- High level of subjectivity and 

uncertainty due to the decision-

makers’ pairwise comparisons 8; 

- Need for a software program to 

calculate the overall performance 

values of the alternatives. 

TOPSIS 

- Simple procedure, easy to understand 

(also for practitioners) 1, 3; 

- Quick process, not requiring the 

definition of additional parameters by 

decision-maker(s) 5; 

- No need for complex programs (a 

simple spreadsheet can be used). 

- The use of Euclidean Distance does 

not consider the correlation of    

criteria 1; 

- Difficult to keep the consistency of 

judgments 1. 
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Supplementary Table 23. Continued. 

 Strengths Limitations 

VIKOR 

- Quite easy to understand, also for 

practitioners; 

- Quick process, only requiring the 

definition of the υ parameter by 

decision-maker(s) 5; 

- No need for complex programs (a 

simple spreadsheet can be used); 

- In addition to ranking, it proposes 

compromise solutions (one or a set), 

thus helping decision-makers to reach 

a final decision 10; 

- It checks the acceptability of the 

obtained results (“acceptable 

advantage” and “acceptable stability in 

decision-making”) 5. 

- A complete ranking of the 

alternatives may not be achieved 11. 

ELECTRE III 

- Suitable for decision problems 

involving non-homogeneous variables 

and different types of criteria 5; 

- It can deal with uncertainty, 

imprecision and ill-determination of 

data, through the threshold      

approach 1, 2, 12; 

- No need for normalization, since it 

can also handle ordinal or descriptive 

information 3; 

- The outranking concept seems 

relevant to practical situations 3; 

- Very poor performance on a single 

criterion may exclude an alternative 

from consideration 7. 

- Algorithm used is relatively  

complex 7; 

- Both the process and outcome can be 

difficult to explain in layman’s terms 1: 

it could be perceived as a “black box” 

by practitioners; 

- Difficulties linked to the definition of 

realistic threshold values 2,13; 

- Subjectivity and possibility of error 

linked to the choice of thresholds; 

- Need for a software package, which 

may decrease the level of confidence 

of decision-maker(s); 

- Difficulty to identify strengths and 

weaknesses of the alternatives due to 

outranking 1; 

- It does not define how much one 

alternative is better than another one 

since no performance values are 

calculated (only ordinal ranks); 

- Possible presence of relations of 

incomparability between the 

alternatives, which can generate an 

equivocal final ranking; 

- A complete ranking of the 

alternatives may not be achieved 3, 7. 

1 Velasquez and Hester, 2013;   2 Frijns et al., 2015;   3 Zanakis et al., 1998;   4 Triantaphyllou and Baig, 2005;            
5 Caterino et al., 2009;   6 Altunok et al., 2010;   7 Hodgett, 2016;   8 Dotoli et al., 2020;   9 Lima Junior et al., 2014;          
10 Opricović and Tzeng, 2004;   11 Zamani-Sabzi et al., 2016;   12 Figueira et al., 2005;   13 Saracoglu, 2015. 
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