Algorithm1. Feature selection method (Feature ranking)
m = number of participants
n = number of features
Data = the full data set matrix (m x n)
I = matrix for storing the values of importance for each feature for all runs (2000 x n). (EBM)
SoF = set containing k subsets of 8 features constructed from the total number of features. (EBM)
FtV = Features t value (FBM)
FpV =Features p value (FBM)

if EBM
repeat 2000 times:
Training Data = Balance Split with random permutation (Data) only 80% of the total data
	repeat for s in SoF:
		Model = RandomForest (Training data [, s])
		Store the values of importance for the features in s in I
FI = mean feature importance of I (vector 1 x n).
sort the FI vector
Remove importance values that were less than 0.55 times the most important feature (FI[0])

if FBM
repeat for all n features:
Perform the student t test and store the value of t and p for all features in FtV and FpV respectively.
Remove features with p value greater than 0.05.
sort the FpV vector





Algorithm 2. Feature selection (Refine filter)
FV = ranked feature vector
P = Matrix containing the pearson correlation between the features in FV

Function First filter(feature vector):
rvector = vector containing the r values for the first feature P[0, ]
repeat for the length of the feature vector times:
	if rvector[i] greater than 0.55 remove feature i.
	update P removing the features removed


Function Second filter(feature vector):
repeat for the n-1 feature in feature vector:
	rvector = vector containing the r values for the in feature P[i, ]
	repeat from the next index feature until the n feature in feature vector:
		if P[k, ] is greater than 0.7 remove feature k
	update P


final feature set = Second filter (First filter (FV))











Algorithm 3. Classification
data = input data

repeat 2000 times:
training data, testing data = Balance splitting with random permutation of data (80% training 20% testing)
best model = 8-fold-cross validation (training data)
use the best model to predict the testing data and store the performance metrics (accuracy, sensibility, sensitivity, and AUC).






















Algorithm 4. Ensemble
data = dataset containing all the participants with complementary imaging data from all modalities.
k = number of imaging modalities (MRI, PET, and DTI)
imaging modalities weights = weights for each imaging modality to be used in the weight fusion part of the ensemble.

function weight ensemble (models, weights, testing data):
models predictions = list storing the predictions for each model

repeat for model in models:
	model prediction = model.predict_probability (testing data)
	append model prediction to models predictions.

final prediction = weight sum of the predictions in models predictions using weights and threshold of 0.5.



repeat 100 times:
training data, testing data = Balance splitting with random permutation of data (80% training 20% testing)
models = store the models one for each modality
	repeat for all imaging modalities in k:
		new model = 8-fold-cross validation (training data)
		add the new model to models

	ensemble prediction = weight ensemble (models, imaging modalities weights, testing data)
	compare the ensemble prediction to the true labels and store the performance metrics (accuracy, sensibility, sensitivity, and AUC)

