
Supplementary Material 2: Ordinal Regression predicts total
microbial load on CFU scale

This supplementary material addresses model building and validation for total microbial load estimation in terms of sample Colony-forming Units
(CFU). We address the problem in the  scale as it is commonly used in the realm of classical microbiology. We propose an ordinal regression
strategy within the Bayesian framework, although maximum likelihood estimation is also possible.

Why ordinal regression?
Colony-forming units are continuous measures. However, in classical microbiology, the ability to quantify microbial abundance has limited
resolution: values differ mainly in orders of magnitude, and it is difficult to state replicable differences within the same magnitude range. Hence,
decision-making based on such data relies mostly on logarithmic differences, and values such as  and  are often treated as
approximately equal. The effect of this “partial discretization” of the outcome space impacts the assumptions of most common regression
techniques. Ordinary linear regression is not robust to outliers or high-leverage points, assuming the Gaussian response  is a simple shift
from  (Harrel 2015). Quantile regression is another option but it assumes the distribution of the outcome to be continuous. These challenges
hamper the modeling of CFU values and are illustrated with second-order polynomial fits in Figure 1.

Figure 1. Common regression techniques for estimation of microbial load as a function of library size. OLS regression is shown in blue, and
quantile (median) regression in red. A small vertical jittering of the points was used to avoid overplotting.

We show library size on the  scale (and add a pseudocount of 1 to avoid ). The OLS regression ignores the monotonic, stepwise
nature of the relationship between microbial load and library size. Notice the predicted values are not bounded in any way. Higher values of library
size will yield estimates well above  CFU, which is unrealistic given PCR saturation (see Methods).

The present prediction task, therefore, requires alternatives that are (1) robust to small variations in predictors and response, (2) capable of
handling upper- and lower-bounded outcome space, and (3) that respect the monotonic relationship between microbial load and NGS reads in a
stepwise fashion. This set of characteristics makes ordinal regression a natural option for predictive modeling.

Cumulative Probability Model predicts Total Microbial CFU
Here we describe the proposed cumulative probability model (CPM), also called proportional odds (PO) model. Formal introductions to ordinal
regression are provided in (Paul-Christian Bürkner and Vuorre 2019; Liu et al. 2017; Harrel 2015; McElreath 2015). Alternatives to CPM include
sequential models and adjacent category models, which we avoid to rely on the interpretability of CPM. Briefly, the model setting is similar to the
one in standard (multinomial) logistic regression with  possible outcomes (classes), except that now the log-odds are based on cumulative
probabilities. For each class :
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The term  is the cutpoint associated with the class , and the subtracted linear model is left without a standard intercept for identifiability (no 
). The subtraction ensures positive coefficients are associated with higher outcome values. When dealing with  total classes, we model

explicitly only  because the last one is completely determined given a sum-to-one constraint, i.e., . Note that as we are
using only library size as predictor, here . Once the model is fitted, one can recover class probabilities as well as expected values
conditional on data:

Calculating conditional expectations may not make sense in many cases (e.g. when the response has no continuous interpretation such as 
). Here, on the other hand, expected values may be as interpretable as the classes themselves: when modeling

classes of CFU values, we may predict relatively high probabilities to  and , for example. In such a case, their weighted
average has a clear biological meaning: the expected CFU value is likely to lie between  and . While minimizing the probability of
error, the class of highest probability (CHP, the most likely outcome) may suffer in terms of performance measures such as mean squared errors.

Checking Ordinality Assumption
The main assumption behind the PO model is that the outcome behaves in ordinal fashion with respect to predictors (Harrel 2015). Although
Figure 1 suggests monotonicity in the relationship between library size and CFU magnitudes, it is useful to plot stratified averages of the covariate
according to levels of the outcome and compare the observations with the model-implied values. We use the function plot.xmean.ordinaly
from the rms  package to construct Figure 2.

Figure 2. Checking ordinality assumption.

Connected solid dots represent the library size averages (  scale) stratified by each CFU magnitude level. Assuming that PO holds, the
dashed line is the estimated expected value of library size given each value of magnitude (i.e., estimated ). As the sample means
virtually follow the model-implied expectations (almost complete overlap between dashed and solid lines), the graph suggests no major departures
from ordinality assumption.

Model specification
Let  denote the total microbial load (in CFU scale) from the  sample. Given our serially-diluted samples, we only observe  abundance
values such that  takes values . We then define the model:
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where  denotes the library size (total number of reads) for the observation . We choose weakly-informative priors for  and  with no
preference for any particular class . This generative model for the observed abundances  is a case of ordinal logistic regression (McCullagh,
1985; Harrell, 2015). We use a logit link over the linear predictor  to estimate cumulative probabilities, i.e., 

. The estimated cumulative probabilities originate the categorical

parameters, and the resulting distribution then generates the observed data. The linear predictor  has two unknown parameters (for which we
have placed weakly-informative priors): the intercepts  and the slope . The intercepts are often called cutpoints as they represent the
intersections between observable categories on the cumulative logit scale (Agresti 2015). The negative-valued slope arises naturally from the PO
model derivation with latent continuous variable motivation. It also guarantees intuitive interpretations: positive values indicate a positive predictor
effect towards higher categories (McElreath 2015). The ordinal model also allows going beyond conditional (cumulative) class probabilities to
estimate conditional expectations, quantiles, and tail probabilities (Harrel 2015). This is a major advantage of CPMs over other more commonly
used methods such as linear and quantile regression (Liu et al. 2017). We fitted the model using brms and Stan (Paul Christian Bürkner 2017;
Carpenter et al. 2017).

Prior Predictive Check
The weakly-informative priors are on the scale of log-odds and the ordering of cutpoints is enforced by the model. Such settings are constructed in
order not to favor any specific magnitude  a priori - although class-specific priors are also possible. The fit below is performed ignoring the
likelihood - the data information.

##  Family: cumulative  

##   Links: mu = logit; disc = identity  

## Formula: cfu_ranges ~ lib_size  

##    Data: df (Number of observations: 270)  

## Samples: 4 chains, each with iter = 4000; warmup = 2000; thin = 1; 

##          total post-warmup samples = 8000 

##  

## Population-Level Effects:  

##              Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS 

## Intercept[1]    -5.32     15.93   -35.86    26.01 1.00     5396     4683 

## Intercept[2]    -1.56     15.94   -32.25    29.92 1.00     5640     5190 

## Intercept[3]     1.41     15.88   -29.41    32.53 1.00     5677     5222 

## Intercept[4]     5.02     15.89   -25.73    36.37 1.00     5744     5332 

## lib_size        -0.03      4.96    -9.58     9.61 1.00     5575     4970 

##  

## Samples were drawn using sampling(NUTS). For each parameter, Bulk_ESS 

## and Tail_ESS are effective sample size measures, and Rhat is the potential 

## scale reduction factor on split chains (at convergence, Rhat = 1).

The model fit demonstrates the monotonicity of the cutpoints (here as Intercept[k] ). Figure 3 shows the actual densities for the parameters
(upper panels) as well as the prior predictive distribution behavior (lower panel).
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Figure 3. Prior-predictive check indicates incorporation of weak prior information.

The single prior distribution for the cutpoints yields densities that are mostly overlaid, but with slightly increasing locations and high variance. Little
information is assumed for the effect of the library size as well. The prior predictive distribution  captures the overall structure of the data ( )
without ruling out most of the outcome space. Notice we have  cutpoints for  possible values of magnitude.

Posterior Predictive Check
Next, we fit the full model (i.e. include the likelihood). We observed no signs of lack of convergence in the MCMC algorithm.

##  Family: cumulative  

##   Links: mu = logit; disc = identity  

## Formula: cfu_ranges ~ lib_size  

##    Data: df (Number of observations: 270)  

## Samples: 4 chains, each with iter = 4000; warmup = 2000; thin = 1; 

##          total post-warmup samples = 8000 

##  

## Population-Level Effects:  

##              Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS 

## Intercept[1]    27.34      3.06    21.73    33.66 1.00     2697     4196 

## Intercept[2]    40.04      4.22    32.48    48.82 1.00     2415     3242 

## Intercept[3]    52.66      5.31    42.99    63.50 1.00     2294     3284 

## Intercept[4]    59.35      5.93    48.62    71.51 1.00     2270     2977 

## lib_size        13.26      1.33    10.85    15.99 1.00     2270     2975 

##  

## Samples were drawn using sampling(NUTS). For each parameter, Bulk_ESS 

## and Tail_ESS are effective sample size measures, and Rhat is the potential 

## scale reduction factor on split chains (at convergence, Rhat = 1).

Figure 4 shows the posterior predictive check. The cutpoints and effect of library size are updated to values in the positive real line. The posterior
means are well separated. The data (lower panel, ) is well captured by the posterior predictive distribution ( ), although there is considerably
more variance for the higher classes.
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Figure 4. Posterior-predictive check suggests the data-generating process is well captured by the model.

CFU Predictions
Given the cumulative probability model structure, we can now recover the CFU magnitude probabilities as well as conditional expectations. We
draw fitted values from the (multidimensional) posterior predictive distribution and show the distributions of magnitude probabilities (Figure 5A).
These probabilities drive the conditional mean estimates (Figure 5B). Figure 5C shows the predicted values as densities for each outcome value,
and Figure 5D replicates the previous OLS regression for comparison.

Figure 5. Draws from posterior distribution with respective magnitude probabilities and derived conditional expectations. Figure 1 is reproduced to
facilitate comparison.



Note that the estimated mean from the ordinal model follows the stepwise fashion of the data, is bounded within the observed outcome space, and
shows similar behavior to standard regression techniques in regions of overlapping read counts. In the CPM, however, the variation is driven by the
logistic estimation of magnitude probabilities, rather than direct estimation of expectations. Additionally, the ordinal model properly shows increased
uncertainty where there is not much data, suggesting confidence intervals from linear regression may be actually overly confident. Class
probabilities are mostly dominant in the non-overlapping regions of the data but still render reasonable posterior predictive distribution.

Model Validation
We further validate the model using 10-fold cross-validation to estimate its overall predictive performance, and then use held-out data as a test set.

10-fold cross-validation
We run 10-fold cross-validation and the results are shown below. Figure 6A shows the fitted models with respective fold-specific held-out data.
Figure 8B shows the predictive performance measures.

Figure 6. 10-fold cross-validation. (A) CV folds with respective fits and observations. (B) CV performance metrics. ‘CHP’ denotes predictions based
on the Class of Highest Probability. Predictions based on expectations are indicated likewise.

For visualization, we have split the assessed metrics into bounded between 0 and 1 and unbounded metrics. Bounded metrics based on CHP
included the observed coverage of 95% predictive interval (gray bands in Figure 6A), Somers’ Delta (a measure of ordinal association),
classification accuracy, and Spearman’s rank correlation. The latter was also assessed for expectation-based predictions. In general, these metrics
varied well above 0.9. Notably, the predictive intervals showed 100% coverage, which is likely overconfident. Nonetheless, from figure 6A we can
see that most intervals spanned only two abundance classes, suggesting errors occur mainly within one order of magnitude from the true values.
Ordinal association, as measured by Somers’ Delta, was consistently greater than 0.95.

Unbounded metrics relied on modified versions of absolute errors, for both CHP- and expectation-based predictions. MALR denotes Mean
Absolute Log-Ratio, a measure that captures how predictions miss observed values in terms of orders of magnitude in the  scale.

MALR varied during CV below 0.2 for both CHP and expectation. Perhaps more intuitive, we also computed the Mean Absolute Error relative to the
true values, capable of measuring absolute errors as proportions of true values.

MAEr tended to be lower for CHP-based predictions compared to expectations, both of each never reaching the value of 0.7.
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Notice that a MALR value of 1 corresponds to a ratio between predicted and observed values of one order of magnitude in the  scale. A
MAEr of 1 indicates prediction absolute error as large as the true value, which would still be largely insignificant given the logarithmic scale.
Overall, the model generates accurate predictions of total microbial load.

Test-set validation
We perform one final model-validation step, which involves predicting new, unseen samples. What we did was holding out beforehand 10% of the
dataset to use for such a task. Figure 7 shows the results.

Figure 7, Test-set validation of CPM for total microbial load.

Notice the results from cross-validation are mostly replicated. MAEr values below 0.6, and MALR values below 0.2, indicating predictive errors far
below the threshold of one order of magnitude. Predictions show high rank correlations as well as ordinal association with observed values.
Classification accuracy seems equally satisfactory.

Tail probabilities
One of the advantages of the CPM model is the richness of its output. Additionally to class probabilities and conditional expectations, one can
retrieve tail probabilities as well (for completeness: one can also calculate conditional quantiles). Once we have , we can
calculate the probability of having at least , conditional on observing :

Notice that here we relax the traditional definition of tail probability ( ) to include the class of interest .

Figure 8 shows the estimated tail probabilities. Given a library size, each curve shows the probability of having at least  CFU for each abundance
value.

Figure 8. Tail probabilities from CPM model.

The above calculation may have practical applications. For instance, instead of relying on the most likely outcome of derived expectations, it may
be enough to know that a sample has a very high probability of having at least  CFU of total microbial load. In cases of high estimation
uncertainty, one may derive such a lower bound of high probability as:
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for some large  - say 95% for instance. Analogously, one can describe the samples by the probabilities of having at most certain value and hance
derive upper bounds of high probabilities:

In the first case, for each observation  you must have  or more CFU with high probability (lower bound). In the second case, for each
observation  you must have  or less CFU with high probability (upper bound).

Finally, it is clear that CPMs can generate a wealth of accurate information useful for total microbial load estimation.
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