
Electronic supplement to the paper Growth of earthquake clusters by

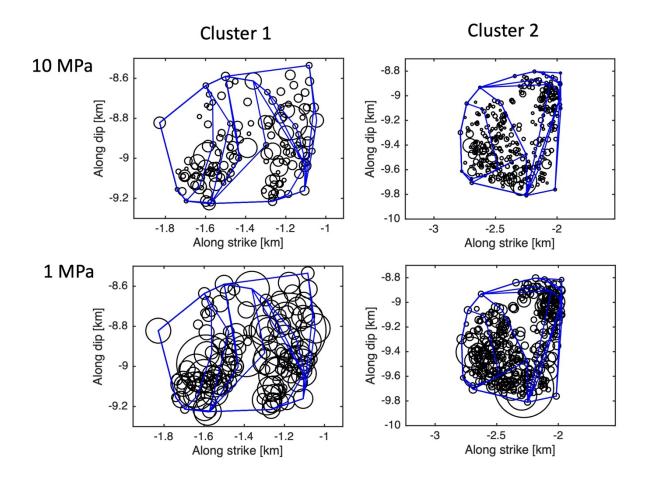

Tomas Fischer and Sebastian Hainzl, Frontiers of Earth Science, 2021

Figure S1. Dependance of the theoretical average rupture area $\langle A \rangle$ (curves) obtained by Eq. (6) on the minimum magnitude M_1 . Full lines show the theoretical average rupture area $\langle A \rangle$ for M_1 =0 and dashed lines for M_1 =0.2. Line color indicates the stress drops of 0.01 MPa (blue), 0.1 MPa (red), 1 MPa (yellow), and 10 MPa (violet). The following constants were used in Eq. (6): b = 1.0, c = 1.09, d = 1.1 and f = 7/16 pi^(3.2).

Crosses indicate the measured average rupture area for Cluster 1 for the extending equidistant windows that included from 10 to 100% of events.

The maximum magnitude M_2 has been increased from 1.1 to 6.1 so that the theoretical effective magnitudes cover the range of measured effective magnitudes. The corresponding effective magnitude $\langle M_{eff} \rangle$ on the horizontal axis in was obtained by Eqs. (9) and (4).

Figure S2. Growth of the two analyzed clusters showing the average rupture areas estimated by Eq. (5) considering static stress drop of 10 and 1 MPa.