SUPPLEMENTARY MATERIAL

Anatomical Structure	MNI	S	
	Х	у	Z
Left posterior inferior parietal lobule	-50	-70	30
Right posterior inferior parietal lobule	50	-70	30
Left anterior inferior parietal lobule	-50	-50	45
Right anterior inferior parietal lobule	50	-50	45
Left hippocampal formation	-20	-20	-20
Right hippocampal formation	20	-20	-20
Left superior parietal lobule	-25	-50	60
Right superior parietal lobule	25	-50	60
Anterior cingulate cortex	5	30	25
Left anterior insula	-30	20	5
Right anterior insula	30	20	5
Posterior cingulate cortex	0	-55	15
Left medial frontal cortex	-35	55	5
Right medial frontal cortex	35	55	5
Left parahippocampal gyrus	-25	-25	20
Right parahippocampal gyrus	25	-25	20
Precuneus	0	-75	45
Left middle temporal gyrus	-65	-20	-10
Right middle temporal gyrus	65	-20	-10

Supplementary Table 1: Seed coordinates used for functional connectivity analysis.*

*The eLORETA solution space was restricted to the cortical gray matter of a realistic head model (MNI152), co-registered to the Talairach brain atlas and digitized at the Montreal Neurologic Institute (MNI) brain imaging center. A single voxel that was closest to the seed point was defined as the centroid of each region of interest (ROI).

			Theta				Delta				Alpha				Beta	
LHEU		df_2	F	р	df_1	df_2	F	р	df_1	df_2	F	р	df_1	df_2	F	р
Time	4	399	20.54	< 0.001	4	399	23.50	< 0.001	4	399	31.38	< 0.001	4	399	40.58	< 0.001
Group	1	21	0.41	0.530	1	21	0.40	0.533	1	21	0.59	0.891	1	21	0.02	0.891
Region	1	399	16.69	< 0.001	1	399	0.01	0.967	1	399	87.62	< 0.001	1	399	43.80	< 0.001
Laterality	1	399	0.01	0.936	1	399	0.01	0.974	1	399	0.68	0.206	1	399	1.61	0.206
Time x Group	4	399	1.04	0.383	4	399	0.18	0.949	4	399	0.46	0.375	4	399	1.06	0.375
Time x Region	4	399	2.45	0.046	4	399	3.15	0.014	4	399	0.46	< 0.001	4	399	11.29	< 0.001
Group x Region	4	399	0.05	0.821	4	399	4.45	0.035	4	399	1.67	0.447	4	399	0.58	0.447
Time x Laterality	1	399	0.24	0.916	1	399	0.31	0.870	1	399	0.09	0.931	1	399	0.25	0.931
Group x Laterality	1	399	0.26	0.611	1	399	0.89	0.345	1	399	0.79	0.643	1	399	0.21	0.643
Region x Laterality	1	399	0.71	0.399	1	399	0.21	0.647	1	399	3.49	0.484	1	399	0.49	0.484
Time x Group x Region	4	399	0.07	0.992	4	399	0.38	0.821	4	399	0.22	0.819	4	399	0.39	0.819
Time x Group x Laterality	4	399	0.01	0.999	4	399	0.26	0.905	4	399	0.02	0.963	4	399	0.15	0.963
Time x Region x Laterality	4	399	0.51	0.729	4	399	0.44	0.781	4	399	0.10	0.881	4	399	0.30	0.881
Group x Region x Laterality	1	399	0.10	0.755	1	399	0.01	0.942	1	399	0.91	0.737	1	399	0.11	0.737
Time x Region x Group x Laterality	4	399	0.17	0.952	4	399	0.25	0.910	4	399	0.09	0.988	4	342	0.08	0.988

Supplementary Table 2: Mixed-models of spectral analysis assessing the effects of *Time*, *Group*, *Region*, *Laterality*, and their interaction for the RSL study (n = 23).*

*Mixed-models were performed separate for each frequency band using *Time*, *Group*, *Region*, and *Laterality* as fixed factors and subject as a random factor. df_1 , numerator degrees of freedom; df_2 , denominator degrees of freedom; *F*, F-statistics, *p*, p-value.

Effect			Theta				Delta				Alpha				Beta	
	df_1	df_2	F	р												
Time	4	342	60.89	< 0.001	4	342	36.61	< 0.001	4	342	21.45	< 0.001	4	18	41.21	< 0.001
Group	1	18	0.35	0.562	1	18	0.23	0.636	1	18	0.09	0.762	1	342	0.62	0.441
Region	1	342	37.53	< 0.001	1	342	7.88	0.005	1	342	52.44	< 0.001	1	342	18.60	< 0.001
Laterality	1	342	0.28	0.597	1	342	0.61	0.436	1	342	0.24	0.623	1	342	0.13	0.719
Time x Group	4	342	1.49	0.204	4	342	1.20	0.310	4	342	0.49	0.742	4	342	2.37	0.092
Time x Region	4	342	7.58	< 0.001	4	342	0.10	0.983	4	342	2.42	0.048	4	342	3.80	0.005
Group x Region	4	342	0.46	0.497	4	342	3.20	0.075	4	342	0.06	0.808	4	342	0.01	0.928
Time x Laterality	1	342	0.16	0.957	1	342	0.31	0.862	1	342	0.14	0.970	1	342	0.76	0.551
Group x Laterality	1	342	0.35	0.553	1	342	0.94	0.333	1	342	0.35	0.554	1	342	2.36	0.125
Region x Laterality	1	342	0.23	0.629	1	342	0.01	0.938	1	342	2.96	0.086	1	342	0.86	0.353
Time x Group x Region	4	342	0.14	0.967	4	342	0.39	0.813	4	342	0.06	0.994	4	342	0.29	0.886
Time x Group x Laterality	4	342	0.62	0.648	4	342	0.68	0.606	4	342	0.08	0.988	4	342	0.81	0.518
Time x Region x Laterality	4	342	0.10	0.982	4	342	0.22	0.927	4	342	0.29	0.881	4	342	0.40	0.812
Group x Region x Laterality	1	342	0.25	0.617	1	342	1.95	0.163	1	342	0.71	0.398	1	342	0.25	0.615
Time x Region x Group x Laterality	4	342	0.25	0.909	4	342	0.16	0.958	4	342	0.15	0.962	4	342	0.40	0.805

Supplementary Table 3: Mixed-models of spectral analysis assessing the effects of *Time*, *Group*, *Region*, *Laterality*, and their interaction for the COCKTAIL study (n = 20).*

Laterality *Mixed-models were performed separate for each frequency band using *Time*, *Group*, *Region*, and *Laterality* as fixed factors and subject as a random factor. df_1 , numerator degrees of freedom; df_2 , denominator degrees of freedom; *F*, F-statistics, *p*, p-value.

Frequency Band	Time	Region	df	t	p _{corr}	Effect Size d (95% CI)
	HDBR2	Anterior	399	-2.96	0.013	-1.23 (-2.12, -0.32)
	HDBR2	Posterior	399	-4.27	< 0.001	-1.78 (-2.75, -0.79)
	HDBR28	Anterior	399	-3.38	0.003	-1.41 (-2.32, -0.48)
eta	HDBR28	Posterior	399	-5.21	< 0.001	-1.78 (-3.2, -1.11)
Тh	HDBR56	Anterior	399	-3.8	0.001	-1.59 (-2.52, -0.62)
-	HDBR56	Posterior	399	-5.46	< 0.001	-2.28 (-3.33, -1.2)
	R+10	Anterior	399	-1.16	0.981	0.49 (-1.31, 0.35)
	R+10	Posterior	399	0.75	1	0.31 (-0.52, 1.13)
	HDBR2	Anterior	399	-2.64	0.034	-1.1 (-1.97, -0.21)
	HDBR2	Posterior	399	-4.64	< 0.001	-1.94 (-2.92, -0.92)
	HDBR28	Anterior	399	-3.75	0.001	-1.56 (-2.49, -0.61)
lta	HDBR28	Posterior	399	-6.68	< 0.001	-2.79 (-3.94, -1.6)
De	HDBR56	Anterior	399	-5.03	< 0.001	-2.1 (-3.12, -1.05)
	HDBR56	Posterior	399	-6.35	< 0.001	-2.65 (-3.77, -1.49)
	R+10	Anterior	399	-2.33	0.081	-0.97 (-1.83, -0.09)
	R+10	Posterior	399	-0.72	1	-0.3 (-1.12, 0.52)
	HDBR2	Anterior	399	-2.67	0.032	-1.11 (-1.98, -0.22)
	HDBR2	Posterior	399	-4.44	< 0.001	-1.85 (-2.82, -0.85)
_	HDBR28	Anterior	399	-3.55	0.002	-1.48 (-2.4, -0.54)
ha	HDBR28	Posterior	399	-6.38	< 0.001	-2.66 (-3.79, -1.5)
Alı	HDBR56	Anterior	399	-3.59	0.002	-1.5 (-2.41, -0.55)
	HDBR56	Posterior	399	-6.34	< 0.001	-2.64 (-3.77, -1.49)
	R+10	Anterior	399	0.00	1	0 (-0.82, 0.82)
	R+10	Posterior	399	1.89	0.236	0.79 (-0.07, 1.63)
	HDBR2	Anterior	399	-1.56	0.482	-0.65 (-1.48, 0.2)
	HDBR2	Posterior	399	-5.22	< 0.001	-2.18 (-3.21, -1.11)
	HDBR28	Anterior	399	-2.24	0.103	-0.93 (-1.79, -0.06)
eta	HDBR28	Posterior	399	-7.28	< 0.001	-2.04 (-4.24, -1.79)
Be	HDBR56	Anterior	399	-2.57	0.042	-1.07 (-1.94, -0.18)
	HDBR56	Posterior	399	-6.88	< 0.001	-2.87 (-4.04, -1.66)
	R+10	Anterior	399	0.99	1	0.41 (-0.42, 1,24)
	R+10	Posterior	399	3.88	< 0.001	1.62 (0.65, 2.55)

Supplementary Table 4. Contrasts examining the effect of *Time* on spectral power for the RSL study (n = 23) using baseline as a reference level.^{*}

*Data show effects of *Time* (HDBR2, HDBR28, HDBR56, R+10) by *Region* (Anterior, Posterior) using baseline (BDC-7) as a reference. *df*, degrees of freedom; $p_{corr.}$, *p*-value corrected for multiple comparisons using the Bonferroni correction for each main effect (theta, delta, alpha, and beta power); Effect Size is Cohen's d; 95% CI, 95% confidence interval.

Frequency Band	Time	Region	df	t	p corr	Effect Size d (95% CI)
	HDBR7	Anterior	342	-4.45	< 0.001	-1.86 (-2.83, -0.85)
	HDBR7	Posterior	342	-9.82	< 0.001	-4.09 (-5.55, -2.6)
	HDBR31	Anterior	342	-4.31	< 0.001	-1.80 (-2.76, -0.8)
eta	HDBR31	Posterior	342	-9.26	< 0.001	-3.86 (-5.27, -2.43)
Тh	HDBR60	Anterior	342	-4.28	< 0.001	-1.79 (-2.75, -0.79)
-	HDBR60	Posterior	342	-9.00	< 0.001	-3.75 (-5.13, -2.35)
	R+7	Anterior	342	0.51	1	0.21 (-0.61, 1.03)
	R+7	Posterior	342	0.50	1	0.21 (-0.61, 1.03)
	HDBR7	Anterior	342	-3.11	0.008	-1.30 (-2.19, -0.38)
	HDBR7	Posterior	342	-3.81	0.001	-1.59 (-2.52, -0.63)
	HDBR31	Anterior	342	-3.73	0.001	-1.56 (-2.49, -0.6)
lta	HDBR31	Posterior	342	-4.46	< 0.001	-1.86 (-2.84, -0.86)
De	HDBR60	Anterior	342	-3.81	0.009	-1.28 (-2.17, -0.36)
	HDBR60	Posterior	342	-3.56	0.002	-1.48 (-2.40, -0.54)
	R+7	Anterior	342	3.14	0.007	1.31 (0.39, 2.2)
	R+7	Posterior	342	2.91	0.015	1.21 (0.31, 2.10)
	HDBR7	Anterior	342	-2.85	0.019	-1.19 (-2.07, -0.28)
	HDBR7	Posterior	342	-5.22	< 0.001	-2.18 (-3.21, -1.11)
_	HDBR31	Anterior	342	-2.13	0.135	-0.89 (-1.74, -0.02)
oha	HDBR31	Posterior	342	-4.14	< 0.001	-1.73 (-2.68, -0.74)
Alţ	HDBR60	Anterior	342	-2.07	0.157	-0.86 (-1.71, -0.01)
•	HDBR60	Posterior	342	-3.39	0.003	-1.41 (-2.32, -0.48)
	R+7	Anterior	342	0.76	1	0.32 (-0.51, 1.13)
	R+7	Posterior	342	2.17	0.124	0.9 (0.03, 1.76)
	HDBR7	Anterior	342	-4.58	< 0.001	-1.91 (-2.89, -0.89)
	HDBR7	Posterior	342	-8.79	< 0.001	-3.67 (-5.02, -2.28)
	HDBR31	Anterior	342	-4.11	< 0.001	-1.71 (-2.67, -0.73)
ita	HDBR31	Posterior	342	-8.48	< 0.001	-3.54 (-4.86, -2.18)
Be	HDBR60	Anterior	342	-3.55	0.002	-1.48 (-2.4, -0.54)
	HDBR60	Posterior	342	-7.06	< 0.001	-2.95 (-4.13, -1.72)
	R+7	Anterior	342	-0.04	1	-0.01 (-0.83, 0.8)
	R+7	Posterior	342	-1.26	0.835	-0.53 (-1.35, 0.31)

Supplementary Table 5. Contrasts examining the effect of *Time* on spectral power for the COCKTAIL study (n = 20) using baseline as a reference level.^{*}

*Data show effects of *Time* (HDBR7, HDBR31, HDBR60, R+7) by *Region* (Anterior, Posterior) using baseline (BDC-8) as a reference. df, degrees of freedom; $p_{corr.}$, p-value corrected for multiple comparisons using the Bonferroni correction for each main effect (theta, delta, alpha, and beta power); Effect Size is Cohen's d; 95% CI, 95% confidence interval.

	Brain Region	,	Short	-term			Mid-	-term			Long	-term	
		Al	pha	В	eta	Alp	Alpha Beta			Al	pha	Beta	
		L	R	L	R	L	R	L	R	L	R	L	R
	Frontal lobe				4	1	1					7	
	Limbic Lobe	10	20	32	74	74	61	109	59	3	2	110	36
J.	Occipital Lobe	10	100	22	207	217	163	268	236	1	9	78	49
R	Parietal lobe	39	53	7	11	117	123	20	23	12	26	2	3
	Sub-lobar				3	1	1	13	5	2	14	5	2
	Temporal lobe		8		108	8	27	109	11	10	1	27	
. 1	Frontal lobe		1	3	192				166			23	172
ĮĮ	Limbic Lobe	24	23	49	187	2	6	18	136	8	18	31	78
Ē	Occipital Lobe			59	336	11	27	114	351	6	11	207	259
OCK	Parietal lobe		146	9	90	27	245	10	65	23	155	27	57
	Sub-lobar		12		100		19		48		15		26
0	Temporal lobe		4		557		50		505		60	1	152

Supplementary Table 6. Number of significant voxels (p < 0.05) per lobe and hemisphere revealed by eLORETA analysis for the RSL (N = 23) and COCKTAIL study (n = 20) showing decreases in alpha and beta cortical current density with respect to baseline.^{*}

^{*}The eLORETA solution space was restricted to the cortical gray matter of a realistic head model (MNI152) registered to the Talairach brain atlas. Short-term, mid-term, and long-term refer to HDBR2/HDBR7, HDBR28/HDBR31, and HDBR56/HDBR60 for the RSL and COCKTAIL study, respectively. L, left hemisphere; R, right hemisphere.

Experiment	Contrast	t critical	t _{max}	р
	HDBR2 vs BDC-7	4.21	3.86	0.142
RSL	HDBR28 vs BDC-7	4.23	3.20	0.597
	HDBR56 vs BDC-7	4.19	3.41	0.414
	R+10 vs BDC-7	4.26	2.88	0.872
	HDBR28 vs HDBR2	4.23	3.16	0.668
	HDBR56 vs HDBR2	4.21	3.07	0.756
	HDBR56 vs HDBR28	4.21	2.64	0.989
	HDBR7 vs BDC-8	4.49	3.77	0.281
E	HDBR31 vs BDC-8	4.42	3.81	0.224
[Y]	HDBR60 vs BDC-8	4.37	3.14	0.757
M	R+7 vs BDC-8	4.42	3.16	0.738
COC	HDBR31 vs HDBR7	4.32	3.95	0.149
	HDBR60vs HDBR7	4.38	3.85	0.199
	HDBR60 vs HDBR31	4.31	3.33	0.533

Supplementary Table 7. Contrasts examining the effect of *Time* on eLORETA resting state functional connectivity for the RSL (n = 23) and COCKTAIL (n = 20) experiment.^{*}

*Connectivity was defined as the lagged phase synchronization between the intracortical EEG-source estimates of the regions of interest. $t_{critical}$, critical probability threshold of non-parametric randomization test with 5000 randomizations corrected for multiple comparisons; t_{max} , maximal t-statistic; $p_{corr.}$, p-value.

Supplementary Figure 1. Impact of long-duration head-down tilt bed rest on normalized electrocortical activity for the RSL study (n = 23, blue circle), and the COCKTAIL study (N = 20, black square). Time courses show changes of EEG spectral power after z-transforming across study participants and testing days for anterior and posterior sites, within the (A) theta, (B) delta, (C) alpha, and (D) beta frequency. Data are presented for each time point as estimated marginal means and standard errors. Significant levels with respect to baseline are indicated by asterisks. BDC-10 to BDC-1 refers to baseline data collection. HDBR1, HDBR30, and HDBR60 indicate first, 30th, and 60th day of HDBR. R+0 to R+10 correspond to the first and 11th day after HDBR. For RSL data were collected at BDC-7, HDBR2, HDBR28, HDBR56, and R+10. For COCKTAIL data were collected at BDC-8, HDBR7, HDBR30, HDBR60, and R+7. *p < 0.05, **p < 0.01, and ***p < 0.001 compared to baseline.