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Autoencoders 
 

Autoencoders use encoder networks to compress higher-dimensionality data 
into lower-dimensionality feature representations (Kramer, 1991), which are then used 
by generative decoders to reconstruct likely patterns of higher-dimensional data. These 
generative models are typically trained by minimizing the reconstruction loss between 
initial input layers of encoders and output layers of generative decoders. Autoencoders 
allow richer feature descriptions to be generated from highly compressed or noisy 
inputs, and can also be used to infer missing data (e.g. filling pixels for occluded 
sensors). 

Variational autoencoders separate the low-dimensionality output of encoders 
into separate vectors for means and variances, from which sample vectors are derived 
as inputs to generative decoders, so allowing data to be generated with novel feature 
combinations (Kingma and Welling, 2014; Doersch, 2016). Training proceeds by 
simultaneously minimizing both the reconstruction loss (as with non-variational 
autoencoders), as well as the KL-divergence between the posterior distributions and 
priors—often a unit Gaussian—so preventing overfitting of observed data and inducing 
more evenly distributed models of latent feature spaces with more interpretable 
features (Hanson, 1990). Disentangled variational autoencoders have a precision-
weighting term applied to the KL-divergence—equivalent to Kalman-gain in Bayesian 
filtering—increasing or decreasing the degree to which different (combinations of) 
feature dimensions are weighted, so allowing more reliable/useful information to be 
more heavily leveraged during training and inference. 
  



Figures from the original publication of IWMT 
 

 
Figure A. Intersections between FEP-AI, IIT, GNWT, and IWMT. (Reprinted with 
permission from Safron, 2020a.) 
The Free Energy Principle (FEP) constitutes a general means of analyzing systems based 
on the preconditions for their continued existence via implicit models. Integrated 
Information Theory (IIT) provides another general systems theory, focused on what it 
means for a system to exist from an intrinsic perspective. The extremely broad scope of 
FEP-AI and IIT suggests (and requires for the sake of conceptual consistency) 
substantial opportunities for their integration as models of systems and their emergent 
properties. Within the FEP (and potentially within the scope of IIT), a normative 
functional-computational account of these modeling processes is suggested in Active 
Inference (AI). Hierarchical predictive processing (HPP) provides an algorithmic and 
implementational description of means by which systems may minimize prediction 
error (i.e., free energy) via Bayesian model selection in accordance with FEP-AI. 
Particular (potentially consciousness-entailing) implementations of HPP have been 
suggested that involve multi-level modeling via the kinds of architectures suggested 
by Global Neuronal Workspace Theory (GNWT). The concentric circles depicted above are 
intended to express increasingly specific modeling approaches with increasingly 
restricted scopes. (Note: These nesting relations ought not be over-interpreted, as it 
could be argued that HPP does not require accepting the claims of FEP-AI.) This kind of 
generative synthesis may potentially be facilitated by developing an additional version 
of IIT, specifically optimized for analyzing systems without concern for their conscious 



status, possibly with modified axioms and postulates: IIT-Consciousness (i.e., current 
theory) and IIT-Emergence (e.g., alternative formulations that utilize semi-overlapping 
conceptual-analytic methods). Integrated World Modeling Theory (IWMT) distinguishes 
between phenomenal consciousness (i.e., subjective experience) and conscious access 
(i.e., higher-order awareness of the contents of consciousness). Non-overlap between 
the circle containing GNWT and the circle containing IIT-Consciousness is meant to 
indicate the conceivability of subjectivity-lacking systems that are nonetheless capable 
of realizing the functional properties of conscious access via workspace architectures. 
IWMT is agnostic as to whether such systems are actually realizable, either in principle 
or in practice. 
 
  



 
Figure B. Sparse folded variational autoencoders with recurrent dynamics via self-
organizing harmonic modes (SOHMs). (Reprinted with permission from Safron, 
2020a.) 
(i) Autoencoder. 
An autoencoder is a type of artificial neural network that learns efficient representations 
of data, potentially including a capacity for generating more complete data from less 
complete sources. The encoder compresses input data over stages of hierarchical feature 
extraction, passes it through a dimensionality-reducing bottleneck and into a decoder. 
The decoder attempts to generate a representation of the input data from these reduced-
dimensionality latent representations. Through backpropagation of error signals, 
connections contributing to a more inaccurate representation are less heavily weighted. 
With training, the decoder learns how to generate increasingly high-fidelity data by 
utilizing the compressed (and potentially interpretable) feature representations encoded 
in the latent space of the bottleneck portion of the network. In the more detailed view 
on the left, black arrows on the encoder side represent connections contributing to 
relatively high marginal likelihoods for particular latent feature space representations, 
given connection weights and data. Red arrows on the decoder side represent 
connections with relatively high marginal likelihoods for those reconstructed features, 
given connection weights and latent space feature hypotheses. While these 



autoencoders are fully connected dense networks, particular connections are depicted 
(and associated probabilities discussed) because of their relevance for predictive 
processing. Note: Although the language of probability theory is being used here to 
connect with neurobiologically-inspired implementations, this probabilistic 
interpretation—and links to brain functioning—is more commonly associated with 
variational autoencoders, which divide latent spaces into mean and variance 
distributions parameterized by stochastic sampling operations in generating likely 
patterns of data, given experience. 
(ii) Folded autoencoder implementing predictive processing. 
In this implementation of predictive processing, autoencoders are ‘folded' at their low-
dimensionality bottlenecks—such that corresponding encoding and decoding layers are 
aligned—with decoding hierarchies (purple circles) depicted as positioned underneath 
encoding hierarchies (gray circles). Within a brain, these decoding and encoding 
hierarchies may correspond to respective populations of deep and superficial 
pyramidal neurons (Bastos et al., 2012). In the figure, individual nodes represent either 
units in an artificial network—or groups of units; e.g., capsule networks (Kosiorek et al., 
2019)—or neurons (or neuronal groups; e.g., cortical minicolumns) in a brain. 
Predictions (red arrows) suppress input signals when successfully predicted, and are 
depicted as traveling downwards from representational bottlenecks (corresponding to 
latent spaces) along which autoencoding networks are folded. Prediction errors, or 
observations for a given level (black arrows) continue to travel upwards through 
encoders unless they are successfully predicted, and so “explained away.” Data 
observations (i.e., prediction errors) are depicted as being sparser relative to high-
weight connections in the (non-folded) encoding network presented above, where 
sparsity is induced via predictive suppression of ascending signals. This information 
flow may also be viewed as Bayesian belief propagation or (marginal) message passing 
(Friston et al., 2017; Parr et al., 2019). In contrast to variational autoencoders in which 
training proceeds via backpropagation with separable forward and backward passes—
where cost functions both minimize reconstruction loss and deviations between 
posterior latent distributions and priors (usually taking the form of a unit Gaussian)—
training is suggested to occur (largely) continuously in predictive processing (via folded 
autoencoders), similarly to recent proposals of target propagation (Hinton, 2017; 
Lillicrap et al., 2020). Note: Folded autoencoders could potentially be elaborated to 
include attention mechanisms, wherein higher-level nodes may increase the 
information gain on ascending prediction-errors, corresponding to precision-weighting 
(i.e., inverse variance over implicit Bayesian beliefs) over selected feature 
representations. 
(iii) Folded autoencoder with information flows orchestrated via recurrent dynamics. 
This row shows a folded autoencoder model of a cortical hierarchy, wherein neuronal 
oscillations mediate predictions—potentially orchestrated by deep pyramidal neurons 



and thalamic (and striatal) relays—here characterized as self-organizing harmonic 
modes (SOHMs). This paper introduces SOHMs as mechanisms realizing 
synchronization manifolds for coupling neural systems (Palacios et al., 2019), and 
sources of coherent neuronal oscillations and evidence accumulation for predictive 
processing. Depending on the level of granularity being considered, these predictive 
oscillations could either be viewed as traveling or standing waves (i.e., harmonics). 
SOHM-based predictions are shown as beta oscillations forming multiple spatial and 
temporal scales. These predictive waves may be particularly likely to originate from 
hierarchically higher levels—corresponding to latent spaces of representational 
bottlenecks—potentially due to a relatively greater amount of internal reciprocal 
connectivity, consistent information due to information aggregation, or both. SOHMs 
may also occur at hierarchically lower levels due to a critical mass of model evidence 
accumulation allowing for the generation of coherent local predictions, or potentially on 
account of semi-stochastic synchronization. Faster and smaller beta complexes are 
depicted as nested within a larger and slower beta complex, all of which are nested 
within a relatively larger and slower alpha complex. Note: In contrast to standard 
machine learning implementations, for this proposal of predictive processing via folded 
autoencoders (and SOHMs), latent space is depicted as having unclear boundaries due 
to its realization via recurrent dynamics. Further, inverse relationships between the 
spatial extent and speed of formation for SOHMs are suggested due to the relative 
difficulties of converging on synchronous dynamics within systems of various sizes; 
theoretically, this mechanism could allow for hierarchical modeling of events in the 
world for which smaller dynamics would be expected to change more quickly, and 
where larger dynamics would be expected to change more slowly. 
 
  



 
Figure C. Cortical turbo codes. (Reprinted with permission from Safron, 2020a.) 
(i) Turbo coding between autoencoders. 
Turbo coding allows signals to be transmitted over noisy channels with high fidelity, 
approaching the theoretical optimum of the Shannon limit. Data bits are distributed 
across two encoders, which compress signals as they are passed through a 
dimensionality reducing bottleneck—constituting a noisy channel—and are then passed 
through decoders to be reconstructed. To represent the original data source from 
compressed signals, bottlenecks communicate information about their respective 
(noisy) bits via loopy message passing. Bottleneck z1 calculates a posterior over its input 
data, which is now passed to Bottleneck z2 as a prior for inferring a likely reconstruction 
(or posterior) over its data. This posterior is then passed back in the other direction 



(Bottleneck z2 to Bottleneck z1) as a new prior over its input data, which will then be 
used to infer a new posterior distribution. This iterative Bayesian updating repeats 
multiple times until bottlenecks converge on stable joint posteriors over their respective 
(now less noisy) bits. IWMT proposes that this operation corresponds to the formation 
of synchronous complexes as self-organizing harmonic modes (SOHMs), entailing 
marginalization over synchronized subnetworks—and/or precision-weighting of 
effectively connected representations—with some SOHM-formation events 
corresponding to conscious “ignition” as described in Global Neuronal Workspace 
Theory (Dehaene, 2014). However, this process is proposed to provide a means of 
efficiently realizing (discretely updated) multi-modal sensory integration, regardless of 
whether “global availability” is involved. Theoretically, this setup could allow for 
greater data efficiency with respect to achieving inferential synergy and minimizing 
reconstruction loss during training in both biological and artificial systems. In terms of 
concepts from variational autoencoders, this loopy message passing over bottlenecks is 
proposed to entail discrete updating and maximal a posteriori (MAP) estimates, which 
are used to parameterize semi-stochastic sampling operations by decoders, so enabling 
the iterative generation of likely patterns of data, given past experience (i.e., training) 
and present context (i.e., recent data preceding turbo coding). Note: In turbo coding as 
used in industrial applications such as enhanced telecommunications, loopy message 
passing usually proceeds between interlaced decoder networks; within cortex, turbo 
coding could potentially occur with multiple (potentially nested) intermediate stages in 
deep cortical hierarchies. 
(ii) Turbo coding between folded autoencoders. 
This panel shows turbo coding between two folded autoencoders connected by a shared 
latent space. Each folded autoencoder sends predictions downwards from its bottleneck 
(entailing reduced-dimensionality latent spaces), and sends prediction errors upwards 
from its inputs. These coupled folded autoencoders constitute a turbo code by engaging 
in loopy message passing, which when realized via coupled representational 
bottlenecks is depicted as instantiating a shared latent space via high-bandwidth 
effective connectivity. Latent spaces are depicted as having unclear boundaries—
indicated by shaded gradients—due to their semi-stochastic realization via the 
recurrent dynamics. A synchronous beta complex is depicted as centered on the 
bottleneck latent space—along which encoding and decoding networks are folded—and 
spreading into autoencoding hierarchies. In neural systems, this spreading belief 
propagation (or message-passing) may take the form of traveling waves of predictions, 
which are here understood as self-organizing harmonic modes (SOHMs) when coarse-
grained as standing waves and synchronization manifolds for coupling neural systems. 
Relatively smaller and faster beta complexes are depicted as nested within—and 
potentially cross-frequency phase coupled by—this larger and slower beta complex. 
This kind of nesting may potentially afford multi-scale representational hierarchies of 



varying degrees of spatial and temporal granularity for modeling multi-scale world 
dynamics. An isolated (small and fast) beta complex is depicted as emerging outside of 
the larger (and slower) beta complex originating from hierarchically higher 
subnetworks (hosting shared latent space). All SOHMs may be understood as instances 
of turbo coding, parameterizing generative hierarchies via marginal maximum a 
posteriori (MAP) estimates from the subnetworks within their scope. However, unless 
these smaller SOHMs are functionally nested within larger SOHMs, they will be limited 
in their ability to both inform and be informed by larger zones of integration (as 
probabilistic inference). 
(iii) Multiplexed multi-scale turbo coding between folded autoencoders. 
This panel shows turbo coding between four folded autoencoders. These folded 
autoencoders are depicted as engaging in turbo coding via loopy message passing, 
instantiated by self-organizing harmonic modes (SOHMs) (as beta complexes, in pink), 
so forming shared latent spaces. Turbo coding is further depicted as taking place 
between all four folded autoencoders (via an alpha complex, in blue), so instantiating 
further (hierarchical) turbo coding and thereby a larger shared latent space, so enabling 
predictive modeling of causes that achieve coherence via larger (and more slowly 
forming) modes of informational integration. This shared latent space is illustrated as 
containing an embedded graph neural network (GNN) (Liu et al., 2019; Steppa and 
Holch, 2019), depicted as a hexagonal grid, as a means of integrating information via 
structured representations, where resulting predictions can then be propagated 
downward to individual folded autoencoders. Variable shading within the hexagonal 
grid-space of the GNN is meant to indicate degrees of recurrent activity—potentially 
implementing further turbo coding—and red arrows over this grid are meant to 
indicate sequences of activation, and potentially representations of trajectories through 
feature spaces. These graph-grid structured representational spaces may also afford 
reference frames at various levels of abstraction; e.g., space proper, degrees of locality 
with respect to semantic distance, abductive connections between symbols, causal 
relations, etc. If these (alpha- and beta-synchronized) structured representational 
dynamics and associated predictions afford world models with spatial, temporal, and 
causal coherence, these processes may entail phenomenal consciousness. Even larger 
integrative SOHMs may tend to center on long-distance white matter bundles 
establishing a core subnetwork of neuronal hubs with rich-club connectivity (Heuvel 
and Sporns, 2011). If hippocampal-parietal synchronization is established (typically at 
theta frequencies), then bidirectional pointers between neocortex and the entorhinal 
system may allow decoders to generate likely patterns of data according to trajectories 
of the overall system through space and time, potentially enabling episodic memory 
and imagination. If frontal-parietal synchronization is established (potentially involving 
theta-, alpha-, and beta- synchrony), these larger SOHMs may also correspond to 



“ignition” events as normally understood in Global Neuronal Workspace Theory, 
potentially entailing access consciousness and volitional control. 
 
  



A review of IIT terminology 
 
 The IIT formalism begins by choosing a candidate system—as substrate for 
consciousness or maximal complex with irreducible cause-effect power over itself—and 
then identifying the intrinsic cause-effect structure of that (proto-)system as a set of 
elements. The cause-effect structure for (and definition of) a system is composed of all 
maximally irreducible cause-effect distinctions (i.e., “concepts”, or “MICE” repertoires), 
which in recent developments within IIT have been extended to include relations 
between concepts/distinctions (Haun and Tononi, 2019). In this way, each and every 
intrinsically existing system is defined by a single (maximally irreducible) cause-effect 
structure, composed of at least one and possibly many distinctions/concepts/MICEs. 
The cause-effect structure and corresponding Phi value can be computed for any 
candidate system, but only candidates that maximize integrated information (as Phi, or 
self-cause-effect power) exclusively qualify as intrinsically existing systems. These 
maximal complexes (of experience) are referred to as MICS in IIT 3.0, and are 
hypothesized to correspond to the physical substrates of consciousness. 
 In this way, the interrelationships between the conceptual entities of IIT for 
analyzing potentially conscious systems may be summarized as follows: 

1. Elements:  Physical constituents of a system that can be manipulated and 
observed, which may or may not contribute to a system’s cause-effect structure. 

2. Mechanisms:  Individual elements or sets of elements that have irreducible cause-
effect power by virtue of constraining both past and future states of other 
elements within a candidate system. 

3. Cause-effect repertoire:  Probability distributions over both past and future states 
for a mechanism, given its present state. 

4. Concepts/distinctions:  Mechanisms and their associated phi values and the 
intrinsic information (as distinctions) specified over their purviews with respect 
to repertoires of causes and effects within a candidate system, understood as an 
ability to maximally (irreducibly) constrain past and future states, given present 
states (i.e., MICE, or maximally irreducible cause effect repertoires). 

5. Cause-effect structure:  The set of all concepts/distinctions for all mechanisms 
within a system. 

6. Conceptual structure:  All cause-effect repertoires within a candidate system 
(which may potentially be reducible to simpler systems), so including all the 
intrinsic (cause-effect) information from the mechanisms of which a system is 
composed. 

7. Complex:  Candidate system with maximal Phi across all possible system 
definitions, existing for itself intrinsically, corresponding to the physical 
substrate of consciousness. 



8. MICS:  The maximally irreducible cause-effect structure entailed by a complex, 
corresponding to “what it is like” to be that intrinsically existing set of 
mechanisms, composed of MICE repertoires, which correspond to the individual 
phenomenal distinctions within experience. 

In this way, IIT begins from axioms regarding the nature of consciousness, postulates 
corresponding mechanisms with those properties, and then formally analyzes 
candidate systems from a system-internal perspective in order to identify sets of 
mechanisms with maximal claim to intrinsic existence as nexuses of self-cause-effect-
power (i.e., integrated information). A maximal complex is suggested to constitute a 
physical substrate of consciousness, entailing a MICS as the totality of experience (as 
concept) unfolding at a particular temporal and spatial grain, within which particular 
qualitative distinctions can be identified (i.e., MICE repertoires). 

IWMT supports this process for identifying maximally explanatory systems and 
even physical substrates of consciousness, except a MICS would entail subjectivity if 
(and only if) it corresponded to a joint probability distribution (or maximal estimate 
derived thereof) from a generative model with spatial, temporal, and causal coherence 
for system and world. In this Bayesian/FEP-AI interpretation of IIT, MICE repertoires 
would correspond to particular factorizations of generative models, which would have 
phenomenal content by virtue of reflecting sensorimotor states for embodied-embedded 
agents. That is, the reason there may be “something that it is like” to be such a 
generative model, is because neural dynamics are coupled to (or entrained with) 
sensors and effectors (which are in turn coupled to system-world dynamics), so 
providing means of modeling spatiotemporally (and causally) coherent patterns in 
system and world. In this way, spatiotemporal (and causal) coherence for both system 
and world allows for the possibility of phenomenal consciousness through the 
alignment/representation of (or generalized synchrony between) those coherences. 
 
  



Evaluating GNWT’s local modules and global workspaces in terms of the 
axioms of IIT 
 

1. Intrinsic existence 
a. Modules have cause-effect power upon themselves; modules depend 

upon workspaces in order to have cause-effect power upon each other. 
b. Workspaces have cause-effect power upon themselves and the modules 

with which they couple. That is, workspaces emerge via processes of self-
organization involving reentrant signaling (Edelman et al., 2011). 

2. Composition 
a. Modules have internal structure by which they exert cause-effect power 

on themselves, as well as other modules via workspaces. 
b. Workspaces have internal structures by which they exert cause-effect 

power upon themselves, the compositions of which depend on the 
modules with which they couple. That is, workspaces have particular 
compositions, so allowing them to possess information about other 
structured phenomena, such as the compositions of the world (Whyte and 
Smith, 2020). 

3. Information 
a. Modules have particular cause-effect structures that differentiate their 

specific compositions from other possible configurations; modules depend 
on workspaces to share this intrinsic information with each other. 

b. Workspaces have particular cause-effect structures that specify particular 
large-scale state compositions, which inform and are informed by the 
modules with which they couple in the context of cognitive cycles of 
perception and action selection, so acting as large-scale systemic causes 
(Madl et al., 2011). 

4. Integration 
a. Modules specify unified cause-effect structures that are irreducible to sub-

components. 
b. Workspaces specify unified cause-effect structures that are irreducible to 

sub-components, including information from the modules with which 
they couple. That is, workspaces are wholes that are greater than the sum 
of their parts (Chang et al., 2019). 

5. Exclusion 
a. Modules specify particular cause-effect structures whose degree of 

intrinsic irreducibility evolves over particular spatial and temporal grains, 
depending on their ability to couple with each other and workspaces. 



b. Workspaces specify particular cause-effect structures whose degree of 
intrinsic irreducibility evolves over particular spatial and temporal scales, 
with particular community structures depending on both internal and 
external dynamics (Betzel et al., 2016). 

 
  



Micro-dynamics of SOHM-formation via generalized synchrony 
 

Considering their potential central role for driving neural evolution, it is worth 
considering in detail the dynamics by which synchronous complexes form. Some recent 
promising work in this direction can be found in models of synchronous dynamics 
emerging through collaborative inference among interacting oscillators (Palacios et al., 
2019). This kind of coordination in the Free Energy Principle and Active Inference (FEP-
AI) framework is often described in terms of the near ubiquitous phenomenon whereby 
systems minimize free energy through generalized synchrony (Strogatz, 2012; Kachman 
et al., 2017), as first demonstrated by Huygens with respect to pendulum clocks 
(Oliveira and Melo, 2015; Willms et al.). Here, I will provide an informal sketch of how 
SOHM-formation might proceed and the potential functional consequences that may 
result from these processes: 

1. Let us consider a set of neuronal oscillators that are initially maximally 
desynchronized, but which gradually acquire a shared absorbing rhythm. 

2. If neuronal oscillators happen to interact while phase-aligned, then they will be 
more likely to be able to drive activity due to stimulation happening within 
windows wherein temporal summation is possible. 

3. If reciprocal connectivity is present between phase-aligned neuronal oscillators, 
then there is a potential for positive feedback and self-sustaining rhythmic 
activity. 

4. In this way, initial locally synchronized ensembles may be able to spread 
synchronous organization as the stability of their rhythmic activity provides 
opportunities for additional phase-aligned oscillators to become entrained to the 
absorbing rhythm. 

5. However, this potential for positive feedback must be accompanied by negative 
feedback mechanisms (e.g. GABAergic interneurons) to maintain adaptive 
exploration of state spaces (Friston et al., 2012), and also to avoid the kinds of 
explosive percolation events observed in clinical conditions like epilepsy 
(Bartolomei and Naccache, 2011; D’Souza and Nagler, 2015; Safron, 2016; 
Kinouchi et al., 2019). 

6. During periods of minimal synchronization, we may expect synchronizing 
ensembles to be maximally sensitive to signals at any phase (Lahav et al., 2018), 
but with minimal abilities to drive coupling systems. 

7. During periods of maximum synchronization, we may expect synchronizing 
ensembles to be maximally sensitive to phase-aligned signals—as well as 
minimally sensitive to non-phase-aligned signals—and with maximal abilities to 
drive coupling systems.  



8. During intermediate periods where synchronization dynamics are accumulating, 
we may expect sensitivity to a greater diversity of signals, with a potential 
capacity for mutual influence between coupling systems during this bifurcation 
window. 

With respect to belief propagation in Bayesian networks, all of this could potentially be 
understood as a means of enabling and constraining belief propagation, influencing 
which messages will be likely to be exchanged on what timescales. 
  



Towards new methods of estimating integrated information 
 

According to IWMT, IIT’s maximal complexes and GNWT’s workspaces are 
emergent eigenmodes of effective connectivity (Friston et al., 2014; Atasoy et al., 2018), 
or self-organizing harmonic modes (SOHMs) (Safron, 2020). Considering the network 
properties of brains (Heuvel and Sporns, 2011), these SOHMs are likely to be centered 
around deep portions of hierarchical generative models which may enable (via turbo-
coding) convergence upon approximate posteriors (and empirical priors for subsequent 
rounds of Bayesian model selection). If this integrative view is accurate, then it may 
provide new means of evaluating phi estimation methods (Tegmark, 2016), with 
significance for both basic research and clinical practice. Reliable means of estimating 
phi are necessary for practical applications, as the formally-prescribed calculations are 
NP-hard (Mayner et al., 2018; Toker and Sommer, 2019), and so require simplifying 
assumptions for even modestly-sized causal networks. Nature, in contrast may 
implicitly perform such calculations nearly ‘for free’ via Hamilton’s principle of least 
action. Unfortunately, Seth and colleagues (2019) have found radically different 
integrated information estimates can be derived with seemingly reasonable modeling 
assumptions. If IWMT’s proposal is correct—that phi corresponds to self-model-
evidence; a claim which has recently received endorsement from the primary architect 
of FEP-AI (2020)—then applying different integration estimation methods to Bayesian 
networks may provide a ground truth for adjudicating between different estimation 
approaches. 

If IWMT’s proposal is correct in suggesting a complex with maximally 
irreducible cause-effect power (i.e., a MICS) is also a maximally informative subgraph, 
then this correspondence could provide further means of estimating integrated 
information (phi). [Note: IWMT does not necessarily ascribe to the particular definition 
of phi provided by IIT 3.0, as a case could be made for meaningful informational 
synergy being better reflected in other ways in different circumstances.] According to 
FEP-AI, neural dynamics can be viewed as implementing approximate Bayesian 
inference, where activation cascades constitute a message passing regime (Friston et al., 
2017; Parr et al., 2019). Theoretically, differential rates of message passing may 
automatically discover maximally connected subnetworks (Mišić et al., 2015), and in 
doing so, converge on processes of variable elimination (Koller and Friedman, 2009). In 
variable elimination, marginal information from factors are progressively integrated 
into an induced graph—or maximal clique—thereby providing a maximally likely a 
posterior (MAP) estimate from the overall belief network. If maximal complexes tend to 
be centered on these maximal cliques (or are equivalent to them) these internally-
directed cause-effect structures could have actual semantic content by virtue of 



containing (or entailing) MAP estimates over hidden causes that define self and world 
for embodied-embedded agents. 

It is unclear whether these specific correspondences between probabilistic 
graphical modeling techniques and concepts from IIT will be found to be valid. 
However, if IWMT is accurate in claiming that self-cause-effect power in IIT 
corresponds with self-model-evidence in FEP-AI, then relative merits for different phi 
estimation techniques could be evaluated based on their abilities to track the inferential 
properties of Bayesian networks. Specifically, metrics of quality for phi estimates could 
be indicated by quicker convergence times for loopy message passing, more precise 
posterior distributions and accurate MAP estimates, and enhanced learning rate or 
inferential power more generally (Koller and Friedman, 2009). 

IWMT’s synthesis could also potentially lead to novel phi estimation methods 
based on modeling processes by which complexes of integrated information emerge via 
self-organization (i.e., SOHMs). Although a detailed handling is beyond the scope of the 
present discussion, useful means of estimating phi and modeling SOHM/complex 
formation may potentially be found in flow networks (cf. max-flow-min-cut theorem) 
(Dantzig and Fulkerson, 1955; Garg et al., 1996; Hoffman, 2003) and other kinds of 
physical systems. Further, game theoretically informed constructs such as Shapley 
centrality have been used in the study of dynamic networks (Chen and Teng, 2017; 
Ghorbani and Zou, 2020), and such measures may be relevant for modeling processes 
by which complexes of cause-effect power emerge. Estimation techniques inspired by 
these kinds of analogies may potentially be more computationally tractable than other 
phi estimation methods, and may also provide further bridges between IIT and FEP-AI 
(and thereby GNWT when workspace dynamics are considered to represent Bayesian 
model selection). 

Speculatively, it appears that there may be potentially fruitful correspondences 
between maximal complexes in IIT and the identification of the kernel (and/or 
nucleolus) of the core of a game (Schmeidler, 1969; Maschler et al., 1979; Maschler, 
1992). But with respect to the core of a cooperative game, integrated information as 
cause-effect power would refer to a nexus of bargaining influence amongst players in a 
coalition. Below, I provide an informal sketch of how such an analysis might proceed: 

1. Persisting neuronal dynamics may be modeled as quasi-agents, with patterns 
constituted by implicit models for their continued existence (i.e., preserving their 
Markov blankets). 

2. For these quasi-agents, utility would be defined in terms of generating self-
model-evidence, and cost would be defined in terms of prediction error—within 
a generalized Darwinian framework, these implicit utility functions would also 
be fitness functions (Safron, 2019a). 



3. Hamilton’s principle of least action implies that each dynamical pattern will 
always choose its best response for minimizing free energy (Kaila and Annila, 
2008; Friston, 2019).  

4. In this self-prediction game, stable coalitions (as cores) would correspond to 
Nash equilibrium solutions, wherein competing and cooperating neuronal quasi-
agents are not incentivized to leave the grand coalition, because doing so would 
increase free energy. 

5. When stable game theoretic equilibria can be found, the center of gravity for 
these geometries would also represent Shapley values (Maschler et al., 1979), or 
solutions that balance the respective utilities and bargaining power for 
participating quasi-agents. 

6. If the game being played entails hypotheses regarding latent causes, and if 
bargaining power is a function of predictive ability, then this Shapley value may 
also represent a precision-weighted probabilistic model of world states, or 
maximal (MAP) estimate derived thereof. 

While admittedly speculative and underdeveloped, such a game theoretic derivation of 
complexes of integrated information—functioning as workspaces—could help provide 
a further cybernetic-computational grounding for IIT (and GNWT), answering the 
question of why there may be “something that it is like” to be a maximal complex, or 
workspace, or any physical system. That is, if the formation processes of workspaces 
and complexes entail ‘calculation’ of probabilistic estimates of system-environment 
states, then for an embodied-embedded agent this could correspond to a “lived” world. 
Alternatively (and very speculatively), similar analyses (and implications) may 
potentially be derived by modeling neural dynamics as entailing a kind of prediction 
market (Conitzer, 2012), with estimated prices representing probabilities for the 
sufficient statistics for world models. These kinds of handlings of integrative processes 
may render notions of “neuronal coalitions” (Crick and Koch, 2003) as something more 
than a mere metaphor, and could also give new meaning to Edelman’s (2011) 
description of consciousness as being realized by a “dynamic core” (Safron, 2019b). 
  



A tentative timeline for the evolution-development of consciousness 
according to IWMT 
 

• Being a model where dynamics entail implicitly predictive modeling processes 
(everything that exists; ~13.45 billion years old within this universe); almost 
certainly nothing that it is like. 

• Being a model that has a model in the form of complex inner states that track 
engagements with the world in an adaptive (i.e., predictive) fashion, but without 
centralized integration structures (all life; ~3.7 billion years old); probably 
nothing that it is like. 

• Being a model that has a model with centralized integration structures (e.g. 
nervous systems), but not ones capable of generating coherent world models (all 
nervous systems; > 1 billion years old); proto-awareness; probably nothing that it 
is like. 

• Being a model that has a model with sub-models that generate sensorimotor 
states for the organism's embodiment, but is incapable of coherently modeling 
causal dependencies between system-world relations (all vertebrates; ~560 
million years old); proto-creature consciousness; unclear whether or not there is 
anything that it is like. 

• Being a model that has a model that has sub-models capable of producing 
phenomenal coherence (all animals with well-developed hierarchical memory 
systems; ~430-200 million years old); basic phenomenality and beginnings of 
consciousness proper; something that it is like. 

• Being a model that has a model that has sub-models capable of modeling 
phenomenally coherent sub-models (hominids (and possibly some other non-
human animals); ~1-2 million years old); higher order consciousness; 
introspectable “something that it is like”, where this accessibility and likeness 
qualitatively changes the nature of subjectivity. 

• Being a nested modeling process capable of generating counterfactually rich 
causal models with respect to both explicit subjectively experienced and 
intersubjectively entrained modeling efforts (all humans; ~70,000 years old?); 
ancestral/child consciousness and the beginning of agency proper; capable of 
imagining what it might be like under counterfactual possibilities. 

• Being a nested modeling process capable of supporting self-processes in an 
entrainment relation with (sharable) diachronic narratives and explicit recursive 
self-reference, including with respect to cultural contexts (~10,000-3,000 years 
old?); modern self/other-consciousness as an evolving generative process capable 
of creating/constructing an enormous variety of meta-aware intentionally-shaped 
experiences; many things that it is like and could be like. 



• Being an even more elaborate set of intersecting (and sometimes nested) 
modeling processes (possible future artificial intelligences, and possibly some 
advanced alien species (if they exist)); unclear what it is/will-be like. 
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