

## Supplementary Material

## **1 EMG NOISE SIMULATION**

In order to simulate experimental noise of EMG signals, the lowest coefficients of the Fourier transform of the reference excitations were biased by addition of independent Gaussian random variables of mean m and standard deviation s. For the  $i^{th}$  coefficient (with 1 < i < 17, i = 0 corresponding to the zero-frequency coefficient) whose real value is denoted by  $FFT_r[i]$ , and for the  $k^{th}$  level of noise ( $0 \le k < 4$ ), the mean and std of the noise distribution are:

$$m = \frac{1}{i} FFT_r[i] * n_{lvl}[k], \tag{S1}$$

$$s = 2.5 * FFT_r[i] * n_{lvl}[k],$$
(S2)

with  $n_{lvl} = [0, 2, 3, 4]^T$ , the vector of noise level. The 1/i decay in Eq. (S1) reduces the power of noise as the frequency increases, in line with the low-pass filtering procedures used in the EMG post-processing.

## 2 COMPUTATION OF THE ESTIMATION ERROR

The mean RMSE displayed in Fig. 4 are averaged across all markers, muscles and joint angles. Let us denote by  $q_n(k)$ , the angle of the  $n^{th}$  of N joints at the  $k^{th}$  of K shooting nodes. The mean RMSE on joint angles was computed as follows:

$$RMSE_q = \frac{1}{N} \sum_{n=0}^{N} \sqrt{\frac{1}{K} \sum_{k=0}^{K} (\hat{q}_n(k) - q_n^*(k))^2},$$
(S3)

where  $\hat{}$  and  $\hat{}$  denote the estimated and the ground truth values respectively. In the same way, let us denote by  $f_m(k)$ , the force of the  $m^{th}$  of M muscles at the  $k^{th}$  of K shooting. The mean RMSE on muscle forces was computed as follows:

$$RMSE_f = \frac{1}{M} \sum_{m=0}^{M} \sqrt{\frac{1}{K} \sum_{k=0}^{K} (\hat{f}_m(k) - f_m^*(k))^2},$$
(S4)

Similarly, let us denote by  $\mathbf{m}_{l}(\mathbf{k})$ , the position of the  $l^{th}$  of L markers at the  $k^{th}$  of K shooting. The mean RMSE on kinematic markers was computed as follows:

$$RMSE_{m} = \frac{1}{L} \sum_{l=0}^{L} \sqrt{\frac{1}{K} \sum_{k=0}^{K} (\|\hat{\mathbf{m}}_{l}(k) - \mathbf{m}_{l}^{*}(k))\|^{2})},$$
(S5)