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1 Elemental measurement reproducibility and uncertainty 

The typical blanks for a 30 ppm Ca session were: 7Li < 2%, 11B < 7%, 25Mg < 0.2% and 43Ca < 
0.02%. Analytical uncertainty of a single measurement was calculated from the reproducibility 
of the Cam-Wuellestorfi, measured during a particular mass spectrometry session. The analytical 
uncertainties on the X/Ca ratios are: ±7 µmol/mol for B/Ca, ±0.01 mmol/mol for Sr/Ca, ±0.01 
mmol/mol for Mg/Ca, ±0.4 µmol/mol for Li/Ca, ±0.1 µmol/mol for Ba/Ca, and ±7 µmol/mol for 
Mn/Ca, respectively (Guillermic et al., 2020). 

2 Range of elemental ratios from modern corals 

We did not attempt to make an exhaustive compilation of modern element/Ca ratios. The ranges 
presented for B/Ca, Sr/Ca, Mg/Ca, Li/Ca, Ba/Ca and Mn/Ca  grey bars in Fig. 1 and 3 are 
presented at 2 SD.  
 
B/Ca modern range was calculated based on 336 values from 6 corals, B/Ca = 483 +/- 200 
µmol/mol (2 SD, n= 336, (Comeau et al., 2017;McCulloch et al., 2017;Guillermic et al., 
accepted)).  
 
Sr/Ca modern range was calculated based on 1722 values from 9 corals, Sr/Ca = 9.1 +/- 0.4 
mmol/mol (2 SD, n=1722, (Felis et al., 2004;Kuhnert et al., 2005;Allison et al., 2011;Giry et al., 
2012;D'Olivo et al., 2019;Guillermic et al., accepted)). 
 
Mg/Ca modern range was calculated based on 699 values from 7 corals, Mg/Ca = 4.8 +/- 1.1 
mmol/mol (2 SD, n=699, Felis et al., 2014a; (Allison et al., 2011;Hathorne et al., 2013b;D'Olivo 
et al., 2019;Guillermic et al., accepted)).  
 
Li/Ca modern range was calculated based on 690 values from 5 corals, Li/Ca = 6.6 +/- 1.2 
µmol/mol (2SD, n=690, (Hathorne et al., 2013a;D'Olivo et al., 2019;Guillermic et al., accepted)). 
 
Ba/Ca modern range was calculated based on 82 values from 2 corals, Ba/Ca=29 +/- 23 
µmol/mol (2SD, n=82, (Guillermic et al., accepted)). 
 
Mn/Ca modern range was selected between 0.01–10 μmol/mol (Shen et al., 1991).  
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3 Supplementary Figures 

Supplementary Figure 1. X-ray powder diffractogram for ground and cleaned powders of select 
fossil specimens examined here. As milling can lead to recrystallization of aragonite to calcite 
(Gill et al., 1995;Waite and Swart), we chose to examine bulk ground powders of three 
specimens displaying mixed mineralogies of milled powders whose values are averaged between 
sub-samples taken within versus between corallites. This further analysis revealed that P. 
maigensis was 90/10 (previously 96.5/3.5), M. annularis 6 was 75/25 (previously 85/15), and O. 
cavernosa was 93/7 (previously 86.5/13.5) aragonite/calcite. This reveals no significant effect 
between the grinding/milling sample preparation in this study. 

 
Supplementary Figure 2. X-ray power diffractogram for milled and cleaned powders of modern 
and fossil specimens examined here, arranged from 100% aragonite to 100% calcite/silicified. 
Species names used here are those provided by the loaning museum. Instrument and software 
settings were to analyze each sample from 5 to 1000 2q for 10 s/step on 0.0167o steps at 45 kV 
and 40 mA, with  irradiance length set to 10 mm of continuous width, a 1o fixed antiscatter slit 
applied to the incident beam, and  0.04 rad sollar slits applied to incident and diffracted beams. 
The modern O. annularis and fossils O. annularis 3 and 4 as well as M. cavernosa 1 have 
previously been reported in (Drake et al., 2020) and are reproduced with modifications here with 
permission of the journal of their original publication. 
 
Pocillopora damicornis (modern)   Orbicella annularis (modern) 
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Porites californica     Montastraea annularis 3 

 
 
 
Orbicella limbata     Porites clavaria 

 
 
Stylophora affinis     Porites maigensis 

 
 
Montastraea annularis 4    Orbicella cavernosa 
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Porites sp.      Montastraea annularis 6 

 
 
 
 
Montastraea cavernosa 1    Favia distans 

 
 
Stylophora conferta     Montastraea annularis 2 

 
 
 
 
Favia sp. 1      Favia sp. 2 
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Zaphrentis dalli 
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Supplementary Figure 3. Scanning electron micrographs of three Pleistocene corals displaying 
a range of mineralogies. M. annularis 4 is >90% aragonite (a,d,g), M. annularis 6 is 85/15 
aragonite/calcite (b,e,h), and M. annuarlis 2 is >90% calcite (c,f,i). A change of texture is 
observed from the >90% aragonite sample (a, d, g) to the >90% calcite sample (c, f, i) which 
exhibits a blocky texture. 
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4 Supplementary Table Legends 
Supplementary Table 1. Trace elements of fossil coral skeletons displaying a range of 
mineralogies. 
 
Supplementary Table 2. Racemization and composition of amino acids extracted as free and/or 
peptide-bound from modern and fossil coral skeletons. 
 
Supplementary Table 3. Results of Wilcoxon tests comparing amino acid composition of 
grouped modern and fossil coral skeletons. 
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