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Appendix A 

Cochlear Model. A three-dimensional cochlear model and the structure of the corresponding ABM were 

previously described (Steele and Taber, 1979; Shintaku et al., 2010). In the model, the governing equation 

for the bending vibration of a plate (i.e., the BM) with isotropic mechanical properties can be described as 

2 2 4 4 4 2 2 4 4
0/ [ / 2 / / ] ,mh w t D w x w x y w y p                 (A1)  

where D, p0, w, and ρm are the bending rigidity, pressure of the acoustic wave, displacement in the z 

direction, and density of the BM, respectively. The fluid/air is assumed to be incompressible and inviscid, 

and the flow is governed by Laplace’s equation: 2φf = 0, where φf is the velocity potential of the fluid/air 

in the x, y, and z directions, and defined by f /u x   , f /v y   , and f /w z   . The 

displacement components are u, v, and w, and the dots denote differentiation with respect to time. The 

subscript f in the velocity potential is u or l, which indicates fluid/air at the upper or lower surfaces of the 

BM, respectively. The velocity potential φf is related to the pressure based on ρf∂φf/∂t = −pf, where ρf is 

the density. The governing equations were solved using Dirichlet boundary conditions at the walls of 

fluid channels: f / 0v y     at y = ±L1/2 and l / 0w z     at y = −L2, where L1 and L2 are the 

width and depth of the fluid channel, respectively. In addition, the kinematic boundary condition at z = 0 

is written as ∂w/∂t = ∂φf/∂z. The pressure p0 is the pressure difference between the top and bottom of the 

BM and can be approximated by p0  −ρ1∂φ1/∂t at z = 0. To obtain an oscillatory solution of w at the 

periodic steady state, a single mode ( , )x y  was assumed for the shape function of the BM and 

determined from the analytic solution of a vibrating beam with the first mode, a length of b(x), and 

Dirichlet boundary conditions:  



38 
 

 

1 2( , ) cos( / ( )) cosh( / ( ))x y y b x y b x          (A2)  

for −b(x)/2 ≤ y≤ b(x)/2, and η(x, y) = 0 otherwise. Note that α1, α2, and β are constant values of 0.8827, 

0.1173, and 4.730, respectively. Because the wave number k(x) slowly varies along x as b(x), the waves 

can be described by the Wentzel−Kramers−Brillouin asymptotic approximation. Under these 

assumptions, the displacement w(x, y, t) of the BM can be written as 

   0
( ) ( , ) exp ( ) ,

x
w W x x y i k d t             (A3) 

where i and W(x) are an imaginary number and the envelope function, respectively. The distribution of 

the LRF was determined by analyzing the forward wave as discussed below. In addition, under the fixed 

boundary condition at the wall of the channel, the solution of the Laplace equation 2φl = 0 can be 

described by 

   2 1 0
0

cosh ( ) cos / exp ( ) ,
x

l j j
j

A z L j y L i k d t     




         
   

(A4)  

where Aj is the Fourier coefficient for the jth mode. Aj is written as 

( )/2

1 1 2( )/2
2 ( ) ( , )cos( / ) sinh( )

b x

j j jb x
A i W x x y j y L dy L L    


        

(A5)  

where ζj = [k2(x) + (jπ/L1)
2]1/2. From the average variation principle, the envelope function is described by 

 1/2
( ) / ,W x c f k   where c is a constant. Here, fω is represented by the following eikonal equation: 

  44 2 2
1 2 1 1

0

( ( )) ( ) 2 ( ) / ( ) ,m l j
j

f k x D C k x C k x C b x hC B    




          


  
(A6) 

where
( )/2 2

1 ( )/2
( , )

b x

b x
C x y dy


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b x
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
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2( )/2

1 1 2( )/2
2 ( , ) cos( / ) tanh( )

b x

j j jb x
B x y j y L dy L L   



        . When an angular frequency ω or frequency 

f(= ω/(2π)) is given, the wave number k is a variable solved using the equation fω(k) = 0 (Eq. (A6)) at the 
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fixed position x and the width b. In fact, the value of position x does not matter for these equations, 

whereas the width b must be specified. The Newton method was used to solve the equation. The iteration 

procedure was repeated until the residual became less than a specified tolerance of 10−6. The term, 

including summation, was derived from j = 0 to 100, which is adequate for this tolerance value. The 

calculation was performed for the condition with air in the channel, which is referred to as the air 

condition. The frequency was changed in the range of 1.0–20.0 kHz. Parameters for the calculation were 

as follows: D = 1.7 × 105 Pa·m4, ρm = 1780 kg/m3, ρair = 1.2 kg/m3, L1 = 17 mm, and L2 = 4.0 mm. 

Characteristic frequencies for the cochlear implant electrode stimulation sites usually are 

estimated using the Greenwood frequency-position equation (Greenwood, 1990). The original Green- 

wood frequency position function for the organ of Corti was derived from human frequency resolution 

integration estimates (critical bandwidths), assuming that critical bandwidths followed an exponential 

function of distance along the cochlear partition and corresponded to a constant physical position on the 

BM. Greenwood proposed the following equation for frequency along the organ of Corti: F = A(10ax − k), 

where F is frequency and x is a portion of the length obtained from the position x from the apical end of 

the BM to the region of interest normalized based on the total length of the membrane. For example, 

coefficients for human cochleae are: A = 165.4, a = 2.1, and k = 1.0, whereas those for cat cochleae are A 

= 456.0, a = 2.1, and k = 0.8 (Greenwood, 1990). The equation allows estimation of the represented 

frequency based on the cochlear position expressed as a percentage of the total length of the organ of 

Corti. 
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Compressive effect. Compression was modeled using a nonlinear function, which is described as  

   
CF CF CF

( ) (1 ) h
f f f

h

d
y g d G A d A d

d d

 
      

   (A7) 

where y is an output signal, d is a voltage signal from the ABM output, and G and dh are constant. Here, 

AfCF is a CF-dependent constant value and is written as  

     1 2 3
0 1 2 3

CF
10

a a x a x a x

fA
  


     

(A8)  

and
 

10 CF33.3log ( ) 83.3x f  ,     (A9) 

where fCF is the CF. The parameter values were defined as follows: G = 5.0, dh = 1.0, a0 = 6.73 × 10−6, a1 = 

2.67 × 10−4, a2 = −0.103, and a3 = 8.16 × 10−3.  

 

Appendix B 

IHC model. In the IHC model, the output u of the asymmetric nonlinear function was described as 

   
16.5

( ) 1.78
1 exp ( 20) /10.5 1 exp ( 17.0) /11.6

u d
d d

 
       ,  

(B1) 

where d was the electric output of the ABM. A set of filtering equations was described as  

1 1 1 1/ / /dx dt x u    ,      (B2) 

   2 1 2 2 2/ / /dx dt x x   ,      (B3)  

    
ihc CF 1 0 2 0( )V G f x g x b   ,     (B4) 

where Vihc represents the membrane voltage output,   CF 10 CF 2( ) 1 / pol log ( )G f f g  , 

3 2
1 2 3 4pol( )x g x g x g x g    , and fCF is a CF of the IHC. The parameters were defined as follows:   
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0.16 ms,   0.48 ms, b0 = 0.1, g0 = 0.65, g1 = −0.047, g2 = 0.56, g3 = −2.3, and g2 = 3.1.  

 

Appendix C  

IHC-AN synapse model. The immediate permeability (PI) was a soft rectifying function of the model 

IHC response (Vihc) and described using the following equation: 

1 ihc( ) = ln [1 + exp(34.657 ( ,  )],IP t p V x t     (C1) 

The relationship was linear above the resting permeability and exponentially decayed to 0 for negative 

inputs. The parameter p1 determines the immediate permeability at rest and the spontaneous firing rate of 

the model fiber. In this study, the parameter value of p1 is 0.0173. For synapses between IHCs and AN 

fibers, a simple three-store diffusion model was used to introduce neural adaptation (Westerman and 

Smith, 1988). The three stores CG, CL, and CI are respectively referred to as global, local, and immediate 

concentrations. The dynamics of CI and CL were governed by the following time-dependent differential 

equations: 

    I I I L L I I( )d C dt P t C P C C V          (C2a) 

      L L L I G L LGd C dt P C C P C C V          (C2b) 

In these equations, the continuous-time version of the original adaptation model used by Carney (1993) 

was simplified using fixed values for the immediate and local volumes (VI and VL in the unit “volume”), 

the local and global permeability (PL in s−1and PG in s−1) (Westerman and Smith, 1988; Lin and Goldstein, 

1995), and the global concentration (CG in spikes/volume). The output of the AN synapse model 
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represents the instantaneous synaptic activity rate(s(t)) of an individual high-spontaneous-rate-threshold 

AN fiber; the output is given by s(t) = R0PI(t)CI(t) (Westerman and Smith, 1988), where R0 is a scaling 

parameter and a CF-dependent function such that R0 = g(x) = 4.06 × x3 − 51.3 × x2 + 211 × x − 280 and x 

= og10(fCF), where fCF is a CF.  

The Westerman model is usually used as a single channel model, which represents a set of 

IHC-AN synapses with similar properties (e.g., specific positions on the BM). Here, we extend the 

description of the single channel to a multichannel version. Equation (C2) is a set of time-dependent 

first-order differential equations that can be transformed into a state model in a state-space model 

representation. In addition, the synaptic response or instantaneous firing rate (s(t)) can be obtained by 

multiplying the input PI(t) by CI(t); this can also be described as an observation model. Thus, the 

equations can be transformed into a time-varying state-space model representation, which is given as 

0/ ( ) ,d dt P t p x x       (C3a) 

( ) ( ),  s K t x t        (C3b) 

where x = [CI(t), CL(t)]T and the superscript T denotes the transpose of the vector. Moreover,  

         (C4)  

p0 = [0, PGCG/VL]T, K(t)=[R0PI(t), 0]T, σ is an observed noise intensity, and ξ(t) is the standard Gaussian 

white noise. Equations (C3a) and (C3b) respectively correspond to a state model and an observation 

model, and they are the same as Eqs. (1a) and (1b). If the matrix P(t) is regular at any time point, the 

solution of Eq. (C3a) can be directly obtained as 

( ( ) ) / /
( ) ,

/ ( ) /
I L I L I

L L L G L

P t P V P V
P t

P V P P V

  
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t P s ds P u du p ds       x x    (C5) 

As stated above, the instantaneous release probability of a vesicle from the immediate store (PI(t)) in the 

Westerman model is usually a function of the intracellular IHC voltage (Vihc(x, t)), which in turn is 

determined by the input sound stimulus. For a high-frequency tone burst, the IHC receptor potential VIHC 

is dominated by the “dc” component (Russell and Sellick, 1978; Cheatham and Dallos, 1993). In 

accordance with previous analyses (Westerman and Smith, 1988; Zhang and Carney, 2005), we hereafter 

assume that PI(t) is a constant value (denoted as pc2) after the onset, whereas the value of PI(t) before the 

onset is denoted as pc1. In the case of the periodic input of a sound stimulus with a lower-frequency tone 

burst, we will further discuss this assumption later—i.e., PI(t) is a time-varying function. Thus, the 

time-dependent coefficient matrix P(t) in Eq. (C3a) is considered to be a constant matrix after the onset of 

the stimulus (i.e., PI(t) = pc2 for t ≥ 0). For additional analysis, Eq. (C3a) can be transformed into the 

Laplace (complex frequency) domain for t > 0 as follows: 

0( ) (0 ) ( ) /sX s x PX s p s   ,    (C6) 

where x(0−) is the reservoir concentration on the vector before the onset. The solution of Eq. (C6) can be 

obtained as 

  1

0( ) (0 ) /X s sI P x p s
          (C7) 

under the assumption that the matrix (sI − P) is regular. Thus, the time domain solution of u(t) (t ≥ 0) can 

be described as 

        (C8) 
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In Eq. (C8), the constant parameters are given as 

      2
1 2 11 22 11 22 12 21 1 2, ( ) 4 2    p p p p p p           (C9) 

and 

 0 1 2L G G I LC P P C V V   ,        (C10a) 

      1 1 0 22 12 1 2 0 1 2(0 ) (0 ) (0 ) ( )I I LC C C p C p C C               ,  (C10b) 

      2 2 0 22 12 1 2 0 1 2(0 ) (0 ) (0 ) ( )I I LC C C p C p C C                ,
  (C10c) 

where  

           (C11) 

and 

    12 12 21 22 1(0 ) / ( ) /I G G L c L IC p P C V p p p p P V    
,
    (C12a) 

    1 12 21 22 1(0 ) ( ) / ( ) ( ) /L c L G G I L c L IC p P P C V V p p p p P V     
.
   (C12b) 

Equation (C8) indicates that the response is characterized functionally by two exponential components 

and five constant parameters. In this study, we assumed that the relationship between the rapid adaptation 

time constant (τ1) in ms and the CF (fCF) in Hz can be described as 

  1 10 CF1.72log ( ) 8.10f    .      (C13) 

The relationship is directly obtained by linearly fitting the result shown in Fig. 11 of Westerman and 

Smith (1984), which reflects results from Mongolian gerbils. Because the adaptation time constant is 

slower (range, 30 ms to 60 ms) for several species (Meddis, 1986b; Zhang and Carney, 2005; Westerman 

211 12

21 2

( ) / /
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        
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and Smith, 1985), we assumed a similar linear relationship between the time constants τ2 and CFs in the 

logarithmic scale and τ2 = −10.0log10(fCF) + 90.0 (ms). This assumption requires further investigation, 

however. To determine parameters of the model described with Eq. (C3), we assumed CF-independent 

constant values for six parameters based on the values reported in Heinz et al. (2001). Therefore, because 

rapid and slow adaptation constants are both CF-dependent values, the other parameters (i.e., PG and VI) 

are also CF-dependent. To determine the model from Eq. (C3) of each channel, we need to determine the 

other three parameters Φ0, Φ1, and Φ2 from PSTHs.  

In addition, hair cells are innervated by two different types of AN fibers (type I and II). Most 

IHCs connect to type I fibers, whereas OHCs form synapses with type II fibers. A number of studies have 

detailed the recording of type I fibers, and the characteristics of these fibers are relatively understood. In 

contrast, it appears to be harder to record from type II fibers, and very little is known about their 

functional roles (Weisz et al., 2009). Furthermore, anatomic evidence suggests that information sent by 

OHCs through type II fibers will be slower, less robust, and less specific due to convergent connection 

patterns between IHCs and type I fibers. Here, therefore, we have focused on modeling only type I fibers. 

The parameter values were defined as follows: CG = 6.67 × 103 spikes/volume, PL = 0.06 s−1, PG = 0.03 

s−1, VI = 5.0 × 10−4 unit volume, VL = 5.0 × 10−3 unit volume, 0R  = 5.0 × 102, and σ = 5.0 spikes/s. 

 

Appendix D 

Discharge generator. The time-dependent Poisson rate R(t) is described as  
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 ( ) ( ) 1 ( )R t s t H t  ,     (D1) 

where s(t) is the AN synaptic signal and H(t) is the discharge history. H(t) is determined by a sum of two 

exponentials (Westerman and Smith, 1985; Zhang et al., 2001):  

   0 1 0 1 1 1 1

1

exp ( ) / exp ( ) / for ( )
( )

1.0 for ( )
A A

A

c t t s c t t R s t t R
H t

t t R

       
 

  ,
  (D2) 

where t1 is the time of the preceding discharge, and c0, c1, s0, s1, and RA are constant parameters: 0.5, 0.5, 

1.0 (ms), 12.5 (ms), and 0.75 (ms), respectively. Discharges do not occur during the absolute refractory 

time RA, and H(t) varies continuously from 1 to 0 as the interval from the previous discharge increases 

beyond RA. 


