SUPPORTING INFORMATION

Selective ¹H-¹⁴N distance measurements by ¹⁴N overtone solid-state NMR spectroscopy at fast MAS

Nghia Tuan Duong¹, Zhehong Gan², Yusuke Nishiyama^{1,3*}

 ¹ NMR Science and Development Division, RIKEN SPring-8 Center, and Nano-Crystallography Unit, RIKEN-JEOL Collaboration Center, Yokohama, Kanagawa 230-0045, Japan
 ² Centre of Interdisciplinary Magnetic Resonance, National High Magnetic Field Laboratory, Tallahassee, Florida 32310, USA
 ³ JEOL RESONANCE Inc., Musashino, Akishima, Tokyo 196-8558, Japan

* Corresponding author. Email: yunishiy@jeol.co.jp

Figure S1. a) *D*-HMQC and b) T-HMQC sequences for probing ¹H-¹⁴N OT correlations and c) ¹H-¹⁵N inverse CPVC for determining ¹H-¹⁵N dipolar couplings. All sequences are employed with ¹H-detection.

Figure S2. The full-scale fitting of experimental ${}^{1}\text{H}{}^{14}\text{N}$ OT-REDOR fraction curves (black circles) by the universal curves (red lines) for a) Tyr: NH₃ at 7.6 ppm and b) AlaAla: NH₃ at 8.5 ppm. The fitting parameters *f* for universal curves are a) 0.82 and b) 0.94.

Figure S3. AcAla: the 2D ¹H-{¹⁴N OT} T-HMQC spectrum at B_0 of 14.1 T and v_R of 62.5 kHz. Experiment was recorded using the sequence in Fig. S1b with 8 scans, 16 t_1 points, and rotor-synchronized t_1 increment of 16.0 µs. The ¹⁴N OT frequency was around the second SSB (n = -2) for the highest S/N. The τ_p and RD were 400 µs and 6 s, respectively. The experimental time was about 0.4 hour. The States-TPPI method was employed for the quadrature detection along the indirect dimension.

Figure S4. AlaAla: all experiments were performed at B_0 of 14.1 T and v_R of 62. 5 kHz. (a,b) The 2D ¹H-{¹⁴N OT} *D*-HMQC spectra for ¹⁴NH₃ and ¹⁴NH, respectively. Experiments were recorded using the sequence in Fig. S1a with 8 scans, 16 t_1 points, and rotor-synchronized t_1 increment of 16.0 µs. The ¹⁴N OT frequencies were around the second SSB (n = -2) for the highest S/N. The (τ_p , τ_{mix} , RD) were (250 µs, 384 µs and 2 s) for a and (100 µs, 384 µs, and 2 s) for b. The States-TPPI method was employed for the quadrature detection along the indirect dimension. The experimental times for both 2D spectra were 0.15 hour. (c,d) The signal fraction $\Delta S/S_0$ as a function of τ_{CW} for c) NH₃ (black squares) and CH(1) (red circles) at τ_{mix} of 1.02 ms when ¹⁴NH₃ was saturated/inverted by τ_{CW} from 304 µs to 432 µs with a step of 16 µs at ¹⁴N OT frequency of -1.72 ppt, and d) NH (black squares) and CH(2) (red circles) at τ_{mix} of 1.28 ms when ¹⁴NH was saturated/inverted by τ_{CW} from 516 µs at ¹⁴N OT frequency of -1.26 ppt. NS and RD were 18 and 2s, respectively. The experimental times for were 0.2 and 0.3 hour for c and d, respectively. The optimum τ_{CW} is shown and highlighted by the dashed line.

Here we consider a spin system containing two protons and one nitrogen (H1 – N^{\cdot}H2), in which H1 is close to while H2 is far away from N. We assume the chemical shifts of H1 and H2 are overlapped to each other. Applying ¹H-¹⁴N OT-REDOR to this three-spin system, we have:

Without CW pulse, the spin-echo signal S_0 is given by:

$$S_0 = S_0^{H1} + S_0^{H2} = 2S_0^{H1}$$
(S1)

As H2 is far away from N, its signal is not affected by the CW pulse. Hence, with the CW pulse, the dephased spin-echo signal S' is given by:

$$S' = {S'}^{H1} + S_0^{H2} = {S'}^{H1} + S_0^{H1}$$
(S2)

Combining Eqs. S1 and S2, the fraction signal is:

$$\frac{\Delta S}{S_0} = \frac{S_0 - S'}{S_0} = \frac{2S_0^{H1} - S'^{H1} - S_0^{H1}}{2S_0^{H1}} = \frac{S_0^{H1} - S'^{H1}}{2S_0^{H1}} = \frac{\Delta S^{H1}}{2S_0^{H1}} = \left(\frac{\Delta S}{S_0}\right)^{H1} / 2.0$$
(S3)

Eq. S3 shows that due to the overlapping of H1 and H2, the actual H1-N fraction curve is scaled down by a factor of 2.0. Therefore, for a good match with the experimental curve, the universal curves should be also be halved.

Figure S5. AlaAla (top): the fitting of experimental CH(1) fraction curves (black circles) by the universal curves (red lines) when ¹⁴NH₃ is saturated/inverted with τ_{CW} of 0.384 ms. The universal curve are not halved. The RMSD analyses (inset) were calculated for the best fitting ¹H-¹⁴N dipolar couplings. The NMR and XRD distances are given. Experimental details are identical to those of Fig. 10d.

Figure S6. AlaAla: the 2D ¹H-¹⁵N inverse CPVC spectrum. Experiment, using the sequence in Fig. S1c, was performed at B_0 of 14.1 T and v_R of 70.0 kHz. The ¹⁵N rf-field was 125 kHz. The ¹H \rightarrow ¹⁵N CP1 and ¹⁵N \rightarrow ¹H CP2 conditions were performed using ¹H and ¹⁵N rf-fields of 20 and 50 kHz, respectively. For CP1, the linear ramp on ¹⁵N channel was -10 % while for CP2, no linear ramp was used. The contact time of CP1 was 2.0 ms while that of CP2, τ , was varied from 0 to 1800 µs with a step of 10 µs. The 100 ms HORROR scheme with $v_{1H} = 35$ kHz was used to suppress the residual ¹H polarizations after CP1. WALTZ decoupling, with ¹⁵N rf-field of 10 kHz, was used to decouple nitrogen during ¹H acquisition. The ¹⁵N chemical shift and its dimension were fixed at 80 ppm and 300 ppm, respectively. NS = 136 and RD = 2s. The experimental time was 13.7 hours. The ¹H-¹⁵N dipolar coupling strength for NH site is determined by an arrow.

NMR pusle program:

- -- Experiment Source Code --
- -- Delta NMR Experiment & Machine Control Interface --

-- Copyright (c) 2009 JEOL Ltd

-- All Rights Reserved --

- -- HELP.eng: Hahn echo with optional decoupling
- -- Category: solids, echo
- -- File name : hahn_echo.ex2
- -- Sequence name : Hahn echo with optional decoupling
- -- Reference :
- -- END HELP

header

filename	=>	"respdor";		
sample_id	=>	"". '		
comment	=>	"Hahn echo w/ opt decoupling";		
process	=	"1d_solid.list";		
induda "haadar calid".				

include "header_solid";

end header;

instrument

include "instrument_solid";

end instrument;

acquisition

x_domain	=>	"Carbon13";		
x_offset	=>	100[ppm];		
x_sweep	=>	400[ppm];		
x_points	=>	2048;		
scans	=>	4;		
x_prescans	=>	0;		
mod_return	=>	1;		
include "acquisition_solid";				

end acquisition;

pulse

collect COMPLE	X,OBS;	
include "pulse_	solid";	
initial_wait	=	10.0[ms];
irr_domain	=>	"Nitrogen14";
irr_offset	=>	-300[ppm];
obs_Setup	=?	"#Setup Observe Pulses#";
obs_width_first	:=>	x90;
obs_width_seco	ond=>	obs_width_first*2, help "second pulse width";
obs_amp_pulse	=>	100[%];
obs_amp_sr4	=>	100[%];
irr_Setup	=?	"#Setup Observe Pulses#";
irr_width_sat	=>	x90, help "first pulse width";
irr_amp_pulse	=>	100[%], 0[%]->100[%]:0.01[%], help "amplitude of pulses";
irr_shape_sat	=>	"SQUARE",("SQUARE","PM_sat");

Echo =? "#Setup up echo times#"; spinning_freq => 10[kHz]; cycle_time_MAS= 1/spinning_freq; number_r4 => 10; number_saturation=? upper(irr_width_sat*spinning_freq); include "obs_sat_solid";

```
recycle_Setup =? "#Setup Recycle Times#";
relaxation_delay=> 5.0[s], help "relaxation delay";
repetition_time=? relaxation_delay + x_acq_time, help"relaxation_delay+x_acq_time";
```

```
atn_Setup=? "#Experiment Attenuator Settings#";obs_atn=> xatn,help "attenuator for obs";
```

irr_atn => irratn, help "attenuator for irr";

obs_phs_first = {3(0), 3(120), 3(240)};
obs_phs_sr4 = {0};
obs_phs_second= {0, 120, 240};
irr_phs_sat = {0};
obs_phs_acq = {0, 240, 120, 240, 120, 0, 120, 0, 240};
module_config = "solid_sample";

begin

initial_wait;

when SATURATION do

obs_sat(sat_loop, sat_pulse_interval, obs_width_sat, obs_amp_sat, obs_atn); end when;

relaxation_delay;

obs_width_first,	(obs.gate,	obs.phs.obs_phs_first,	obs.amp.obs_amp_pulse
obs.atn.obs_atn);			

loop number_r4 times

cycle_time_MAS / 4,	(obs.gate,	obs.phs.obs_phs_sr4.lstep(120)	+	90,
obs.amp.obs_amp_sr4, obs.atn.obs_atn);				
cycle_time_MAS / 4,	(obs.gate,	obs.phs.obs_phs_sr4.lstep(120)	-	90,
obs.amp.obs_amp_sr4, obs.atn.obs_atn);				
cycle_time_MAS / 4,	(obs.gate,	obs.phs.obs_phs_sr4.lstep(120)	+	90,
obs.amp.obs_amp_sr4, obs.atn.obs_atn);				
cycle_time_MAS / 4,	(obs.gate,	obs.phs.obs_phs_sr4.lstep(120)	-	90,
obs.amp.obs_amp_sr4, obs.atn.obs_atn);				
cycle_time_MAS / 4,	(obs.gate,	obs.phs.obs_phs_sr4.lstep(120)	-	90,
obs.amp.obs_amp_sr4, obs.atn.obs_atn);				

cycle_time_MAS / 4, obs.phs.obs_phs_sr4.lstep(120) 90, (obs.gate, + obs.amp.obs_amp_sr4, obs.atn.obs_atn); cycle_time_MAS / 4, (obs.gate, obs.phs.obs_phs_sr4.lstep(120) 90, obs.amp.obs amp sr4, obs.atn.obs atn); cycle_time_MAS / 4, obs.phs.obs_phs_sr4.lstep(120) 90, (obs.gate, + obs.amp.obs_amp_sr4, obs.atn.obs_atn);

end loop;

parallel begin

number_saturation/spinning_freq;

justify center

obs_width_second, (obs.gate, obs.phs.obs_phs_second,

obs.amp.obs_amp_pulse, obs.atn.obs_atn);

justify center

irr_width_sat, (irr.gate, irr.phs.irr_phs_sat, irr.amp.irr_amp_pulse, irr.shape.irr_shape_sat, irr.atn.irr_atn); end parallel;

loop number_r4 times

cycle_time_MAS / 4, (obs.gate, obs.phs.obs_phs_sr4.lstep(120) + 90, obs.amp.obs_amp_sr4, obs.atn.obs_atn); obs.phs.obs_phs_sr4.lstep(120) 90, cycle_time_MAS / 4, (obs.gate, obs.amp.obs_amp_sr4, obs.atn.obs_atn); cycle_time_MAS / 4, 90, (obs.gate, obs.phs.obs_phs_sr4.lstep(120) + obs.amp.obs amp sr4, obs.atn.obs atn); cycle_time_MAS / 4, obs.phs.obs_phs_sr4.lstep(120) 90, (obs.gate, obs.amp.obs_amp_sr4, obs.atn.obs_atn); cycle_time_MAS / 4, (obs.gate, obs.phs.obs_phs_sr4.lstep(120) 90, obs.amp.obs amp sr4, obs.atn.obs atn);

cycle_time_MAS / 4, obs.phs.obs_phs_sr4.lstep(120) 90, (obs.gate, + obs.amp.obs_amp_sr4, obs.atn.obs_atn); obs.phs.obs_phs_sr4.lstep(120) cycle_time_MAS / 4, (obs.gate, 90, _ obs.amp.obs_amp_sr4, obs.atn.obs_atn); cycle_time_MAS / 4, (obs.gate, obs.phs.obs_phs_sr4.lstep(120) 90, + obs.amp.obs_amp_sr4, obs.atn.obs_atn);

end loop;

acq(dead_time, delay, obs_phs_acq);

end pulse;