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I. NUMERICAL INTEGRATION

Here is a simplified version of our model:

dS
dt
= −κSI, (1)

dI
dt
= −γI + κSI, (2)

dR
dt
= ρI, (3)

dM
dt
= λI, (4)

where γ = 1
τ = λ + ρ. We consider that the susceptible population does not vary appreciably in the

time span of one day, so that we can assume that it is basically constant in this approximation of the

integration between tn and tn+1. Furthermore, we also assume initially, for the sake of simplicity,

that all three independent parameters of the model are constant in time. Hence, when tn < t < tn+1,

after integrating Eq. (2) from tn to t, we find

I(t) = Ine(−γ+κSn)(t−tn), (5)

in which Sn = S(tn). When t = tn+1, we obtain

In+1 = Ine(−γ+κSn)∆t,

where ∆t = tn+1 − tn. From the integration of Eq. (1), we find

ln
Sn+1
Sn
= −κ

∫ tn+1

tn
I(t)dt = −κIn

∫ tn+1

tn
e(−γ+κSn)(t−tn)dt =

κIn

(γ − κSn)

[
e(−γ+κSn)∆t − 1

]
= κ

In+1 − In

γ − κSn
.

(6)

Thus, we obtain

Sn+1 = Sne
κ∆I

γ−κSn , (7)

where ∆I = In+1 − In. From Eqs. (3) and (5), we find

Rn+1 = Rn + ρIn
e(−γ+κSn)∆t − 1
−γ + κSn

= Rn +
ρ∆I

−γ + κSn
(8)

Likewise, from Eqs. (4) and (5), we find

Mn+1 = Mn + λIn
e(−γ+κSn)∆t − 1
−γ + κSn

= Mn +
λ∆I

−γ + κSn
(9)
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In summary, we replace the system of ordinary differential equations, Eqs. (1-4) by the system of

difference equations

Sn+1 = Sne
κ∆I

γ−κSn ,

In+1 = Ine(−γ+κSn)∆t,

Rn+1 = Rn +
ρ∆I

−γ + κSn
,

Mn+1 = Mn +
λ∆I

−γ + κSn
.

(10)

When the parameters vary in time, we have

Sn+1 = Sne
κn∆I

γ−κnSn ,

In+1 = Ine(−γ+κnSn)∆t,

Rn+1 = Rn +
ρn∆I

−γ + κnSn
,

Mn+1 = Mn +
λn∆I

−γ + κnSn
,

(11)

where κn = κ(tn), λn = λ(tn), and κn = κ(tn). In the linear limit we have

Sn+1 = Sn(1 − κnIn∆t),

In+1 = In[1 + (−γ + κnSn)∆t] = In

[
1 + (R0n − 1)

∆t
τ

]
,

Rn+1 = Rn + ρIn∆t,

Mn+1 = Mn + λIn∆t,

(12)

where R0n is the basic reproduction number at time tn.

II. NON-NEGATIVENESS PROOF

This is an alternative proof of the positivity proof presented in the section 3 of the Appendix.

We show below that if the initial values of the state variables S0, I0, R0, M0 ≥ 0 of our ODE system

given by Eq. (1), then S(t), I(t), R(t), M(t) will always remain ≥ 0. Since the system flow of our

model is continuous, any variable has to cross the zero value before becoming negative. If I = 0,

then dI
dt = 0. Hence, I(t) ≥ 0 for all t > 0 since I0 > 0. Consequently, dM/dt ≥ 0 implying that

M(t) ≥ 0, since I ≥ 0 and λ(t) ≥ 0. If R = 0, then dR/dt ≥ 0 since I ≥ 0 and ρ ≥ 0. Hence,

R(t) ≥ 0 for all t if R0 > 0. Finally, if S = 0, dS/dt = ν(I + R) ≥ 0.
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A. Boundedness proof

If µ = ν = 0, then, from Eq. (1) of the paper,

d
dt
(S + I + R + M) = 0. (13)

Hence, S(t) + I(t) + R(t) +M(t) = S0 + I0 + R0 +M0 = 1. As the initial condition is S0 = 1 − 1/P0

and I0 = 1/P0, R0 = M0 = 0 and state variables are all non-negative, as shown above, we obtain

that 0 ≤ S(t), I(t), R(t), M(t) ≤ 1. In the case of Eq. (1) with µ and ν positive, we can write

d
dt
(S + I + R + M) = (ν − µ)(S + I + R) ≤ (ν − µ)(S + I + R + M), (14)

assuming ν > µ. Hence, we obtain S(t)+ I(t)+ R(t)+M(t) ≤ e(ν−µ)t . Therefore, as S(t), I(t), R(t),

and M(t) are positive, they are all bounded in any given finite time interval.

B. Positiveness of I(t)

The rate in which I(t) decreases the fastest occurs when κ(t) = 0. Hence, at most I(t)

decreases exponentially with rate µ + 1/τ. Therefore, in a finite time interval, I(t) > 0 if I0 > 0.

III. DATA

All data in the manuscript are contained in the following databases. The data from Germany

and Brazil, was obtained from the site https://data.humdata.org/dataset/novel-c

oronavirus-2019-ncov-cases which contains the data compiled by the Johns Hopkins

University Center for Systems Science and Engineering (JHU CSSE). The specific CSV files for

the confirmed, recovered, and deceased are:

• time_series_covid19_confirmed_global_narrow.csv

• time_series_covid19_deaths_global_narrow.csv

• time_series_covid19_recovered_global_narrow.csv

The header of all three files is:

Province/State,Country/Region,Lat,Long,Date,Value,ISO 3166-1 Alpha 3-Codes,

Region Code,Sub-region Code,Intermediate Region Code

https://data.humdata.org/dataset/novel-coronavirus-2019-ncov-cases
https://data.humdata.org/dataset/novel-coronavirus-2019-ncov-cases
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The data from Brazilian states and cities are obtained from the url: https://data.bra

sil.io/dataset/covid19/caso.csv.gz

The header file is

date,state,city,place_type,confirmed,deaths,order_for_place,is_last,

estimated_population_2019,city_ibge_code,confirmed_per_100k_inhabitants,

death_rate

https://data.brasil.io/dataset/covid19/caso.csv.gz
https://data.brasil.io/dataset/covid19/caso.csv.gz
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IV. CODE DESCRIPTION AND USAGE

The programs, written in Python, used in the manuscript are: activeWorld.py, covidBR.py,

and sensibilityAnalysis.py. Fig. 1 is generated by sensibilityAnalysis.py. The results for Germany

(Figs.2-3) and Brazil (Figs. 4-5) are generated by activeWorld.py. The results for Paraíba (Figs.

6-7) and Campina Grande (Figs. 8-9) are generated by covidBR.py

A. Description of activeWorld.py

CSV data files

1. Data

processing

2. Statistical

Analysis

3. Parameter

estimation

4. Numerical

integration

5. Plot results

Figure 1
κ(t), R0(t), and Pλ(t)

Figure 2
confirmed, recovered,
deceased, and active

confirmed, deceased

activeStat

κ(t), λ(t), ρ(t)

S(t), I(t), R(t), M(t)

Estimation of active cases

(activeDelay, activeStat)

confirmed,

recovered,

deceased,

and active

κ(t), R0(t)

Pλ(t)

FIG. 1. Flowchart of activeWorld.py
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1. Data processing

# 1. Data processing

csvFiles = ['time_series_covid19_confirmed_global_narrow.csv',

'time_series_covid19_deaths_global_narrow.csv',

'time_series_covid19_recovered_global_narrow.csv']

# a. Open confirmed datafile create dataframe

df = pd.read_csv(csvFiles[0], sep =',', skiprows=0, header=0, names=["ProvinceState", "Country/Region", "Lat", "Long", "Date", "Value", "ISO 3166-1 Alpha 3-Codes", "Region Code", "Sub-region Code", "Intermediate Region Code"])

# Filter country data

df = df[df['Country/Region'].str.contains(country)]

df = df.sort_values('Date', ascending=True)

confirmed = df.Value.to_numpy().astype(int)

ind0 = (confirmed!=0).argmax() # first nonzero index of confirmed

ind0 += offset

confirmed = confirmed[ind0:] # cut off the leading zeros

print('ind0', ind0, 'offset', offset)

dates = pd.to_datetime(df.Date) # covert string dates to datetime format

dates = dates[ind0:]

# b. Open deaths datafile, create dataframe.

df = pd.read_csv(csvFiles[1], sep =',', skiprows=0, header=0, names=["ProvinceState", "Country/Region", "Lat", "Long", "Date", "Value", "ISO 3166-1 Alpha 3-Codes", "Region Code", "Sub-region Code", "Intermediate Region Code"])

df = df[df['Country/Region'].str.contains(country)]

deaths = df.Value.to_numpy().astype(int)

deaths = deaths[::-1]

deaths = deaths[ind0:]

indFirstDeath = (deaths!=0).argmax()

print(indFirstDeath, 'First death on', dates.iloc[indFirstDeath], deaths[indFirstDeath])

# c. Open recovered datafile, create dataframe.

df = pd.read_csv(csvFiles[2], sep =',', skiprows=0, header=0, names=["ProvinceState", "Country/Region", "Lat", "Long", "Date", "Value", "ISO 3166-1 Alpha 3-Codes", "Region Code", "Sub-region Code", "Intermediate Region Code"])

df = df[df['Country/Region'].str.contains(country)]

recovered = df.Value.to_numpy().astype(int)

recovered = recovered[::-1]

recovered = recovered[ind0:]
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# d. generate active cases from data

activeCases = confirmed-deaths-recovered

# e. Obtain country population (World Bank data)

df = pd.read_csv('worldPopulation.csv', sep =',', skiprows=0, header=0,

names=['Country_Code','Ranking','Country','Population'])

df = df[df['Country'].str.contains(country)]

population = df['Population'].iloc[0]

population = population.replace(' ','')

population = population.replace(',','')

print(df)

P_0 = int(population)*1000

print(P_0)

2. Statistical Analysis

# 2. Statistical analysis

# Active cases delay estimate

activeDelay = confirmed[delay:]-confirmed[:-delay]

n_avg=delay

day = 24 # day in hours

dt = 1.0/day # integration time-step

tau = (1+n_avg*day)*dt # average time duration of infection

nu = mu= 0.0

# Active cases statistical estimate

q = n_avg/(1+n_avg) # probability to remain sick after 1 day

newConf = np.diff(confirmed) # casos novos confirmados ao dia

newDead = np.diff(deaths) # casos novos confirmados ao dia

N = len(newConf)

activeStat = np.ones(N)

n_pow = np.arange(N)

n_pow_des = n_pow[::-1]

q_to_n = q**n_pow_des
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for i in n_pow:

activeStat[i] = np.sum(newConf[:i]*q_to_n[N-i:])

3. Parameter estimation

# 3. Parameter estimation

# a. Contagion rate function

contagionRate = []

N_as = len(activeStat)

for i in np.arange(0, N_as):

if i+7<=N_as:

XX = np.arange(i, i+7)

ZZ = activeStat[i:i+7]

else:

XX = np.arange(i-7, i)

ZZ = activeStat[i-7:i]

if len(XX)==len(ZZ):

slope, intercept, r_value, p_value, std_err = stats.linregress(XX, ZZ)

I_avg = np.sum(ZZ)/7

if I_avg==0:

ka_t=0

else:

ka_t = slope/I_avg+1.0/tau

#print(i, ka_t)

if ka_t<0:

ka_t = 0

elif ka_t>cutoff:

ka_t = cutoff

contagionRate.append(ka_t)

print(len(dates[1:-7]), len(contagionRate))

##########################################################

def kappa(t):
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ind = int(1.0*t)

N=len(contagionRate)

if ind>=N:

ind = N-1

ka = contagionRate[ind]

if ind>0 and ind<N and ka==0:

ka = (contagionRate[ind-1]+contagionRate[ind+1])/2

return ka

##########################################################

# vectorize contagion rate

kappa_t_vec = []

n_max = len(confirmed)-1 # in days

tt = np.arange(0.0, n_max, dt)

for ind, t in enumerate(tt[::day]):

ka = kappa(t)

kappa_t_vec.append(ka)

kappa_t_vec = np.array(kappa_t_vec)

# generate Rt

R0_t = tau*kappa_t_vec

# b. Lethality probability

P_let = np.zeros(N)

for i in n_pow[:-1]:

denom = np.sum(newConf[:i]*q_to_n[N-i:])

if denom>0:

s = newDead[i]/denom

else:

s=0

P_let[i] = s/(1-q)

print('P_let')

# c. Lethality and recovery rates

la = P_let/tau

rho = 1.0/tau-la
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P_rho=1-P_let

4. Numerical integration

# 4. Numerical model epidemic evolution (modified SIR model)

##########################################################

def get_l_r(t):

ind = int(1.0*t)

N=len(P_let)

if ind>=N:

ind = N-1

la = P_let[ind]/tau

rho = 1.0/tau - la

return la, rho

##########################################################

def derivs (x, t): # return derivatives of the array x

S = x[0] # susceptíveis

I = x[1] # infectados

R = x[2] # Recuperados

M = x[3] # Mortos

T = S+I+R

l, r = get_l_r(t)

dSdt = nu*T-mu*S-kappa(t)*S*I

dIdt = -mu*I+kappa(t)*S*I-r*I-l*I

dRdt = r*I-mu*R

dMdt = l*I

return [dSdt, dIdt, dRdt, dMdt]

##########################################################

C_0 = confirmed[0]

R_0 = recovered[0]

D_0 = deaths[0]

A_0 = C_0-R_0-D_0

print('C_0', C_0, 'A_0', A_0, 'R_0', R_0, 'D_0', D_0)
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yinit = [1.0-C_0/P_0, A_0/P_0, R_0/P_0, D_0/P_0] # initial values

y = scipy.integrate.odeint(derivs, yinit, tt)

S = y[:, 0]

I = y[:, 1]

R = y[:, 2]

M = y[:, 3]
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B. Description of the code covidBR.py

CSV data file

1. Data

processing

2. Statistical

Analysis

3. Parameter

estimation

4. Numerical

integration

5. Plot results

Figure 1
κ(t), R0(t), and Pλ(t)

Figure 2
confirmed, deceased,

and active

confirmed, deceased

activeStat

κ(t), λ(t), ρ(t)

S(t), I(t), R(t), M(t)

Estimation of active cases

(activeDelay, activeStat)

confirmed,

deceased

κ(t), R0(t)

Pλ(t)

FIG. 2. Flowchart of covidBR.py. The code is very similar to activeWorld.py
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V. FORECASTING

A. Markov Chain

The list with the last 3 weeks of κ(t) data is

[0.08240635 0.06846006 0.06489878 0.06836595 0.07755655 0.08288899

0.07865233 0.06396189 0.05664613 0.05661004 0.05664208 0.06474608

0.06957361 0.06598644 0.05260842 0.05664613 0.05661004 0.05664208

0.06474608 0.06957361 0.06598644]

The list of differences ∆κi = κ(ti) − κ(ti−1) is

[-1.39462919e-02 -3.56128297e-03 3.46716808e-03 9.19060214e-03

5.33243964e-03 -4.23665992e-03 -1.46904361e-02 -7.31575917e-03

-3.60917017e-05 3.20364767e-05 8.10400363e-03 4.82752846e-03

-3.58716748e-03 -1.33780257e-02 4.03771634e-03 -3.60917017e-05

3.20364767e-05 8.10400363e-03 4.82752846e-03 -3.58716748e-03]

If ∆κi < 0, in the above list, replace it with 0, otherwise replace it with 1. We then obtain the list

[0 0 1 1 1 0 0 0 0 1 1 1 0 0 1 0 1 1 1 0]

The list of lengths of the continuous sequences of 1’s are

[3, 3, 1, 3].

The list of lengths of the continuous sequences of 0’s are

[2, 4, 2, 1, 1].

Based on this, the average length of positive increments of the contagion rate is n̄+ = 2.5 days and

of negative increments is n̄− = 2.0 days. Based on this we find the transition probabilities

q++ =
n̄+

1 + n̄+
≈ 0.714

p+− = 1 − q++ ≈ 0.286

q−− =
n̄−

1 + n̄−
≈ 0.667

p−+ = 1 − q−− ≈ 0.333

(15)
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FIG. 3. Markov chain diagram. The transition probabilities are given by Eq. (15) and were obtained

according to the algorithm shown above.
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FIG. 4. A Probability distribution for the increments of κ(t) in the next two weeks based on the time series

of the past 20 days of data obtained from ∆κi. B Probability distribution for the decrements of κ(t).
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FIG. 5. A Time series of active cases and the forecast for the next two weeks. B Histograms of slices of

trajectories for the 4th, 8th, and 12th day from the date of the last active data point. The vertical dashed lines

indicate the mean values.
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VI. HOW TO RUN THE CODE

The command line to run activeWorld.py from a Linux terminal is

python3 activeWorld.py config.txt

The file config.txt has the following lines in the case of Germany:

country,Germany

delay,13

offset,41

cutoff,0.41

The file config.txt has the following lines in the case of Brazil:

country,Brazil

delay,14

offset,22

cutoff,0.43

The command line to run covidBR.py from a Linux terminal is

python3 covidBR.py config.txt

The file config_PB.txt has the following lines in the case of Paraíba:

state,PB

city,_

delay,14

offset,0

cutoff,0.38

The file configCampinaGrandePB.txt has the following lines in the case of Campina Grande:

state,PB

city,Campina Grande

delay,14

offset,21

cutoff,0.35
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