Transient increase of C4 burst rate during hypoxic stimulation in the brainstem-spinal cord preparation

Methods

Experiments were performed with brainstem-spinal cord preparations from newborn (postnatal day 0-1) Wistar rats. The newborn rats were deeply anesthetized with isoflurane. The brainstem and spinal cord were isolated and superfused at a rate of 3.0 mL/min with the following artificial cerebrospinal fluid (in mM): 124 NaCl, 5.0 KCl, 1.2 KH₂PO₄, 2.4 CaCl₂, 1.3 MgCl₂, 26 NaHCO₃ and 30 glucose, equilibrated with 95% O₂ and 5% CO₂, pH 7.4, at 25-26°C. In most experiments, the preparations were cut transversely at a level just rostral to the anterior inferior cerebellar artery. For hypoxic stimulation (15 min), the superfusate was exchanged to 0% O₂ from 95% O₂ at 5% CO₂.

The initial data analyses were performed using the LabChart 7 Pro software program (ADInstruments, Castle Hill, Australia). The burst rate was calculated from 10 consecutive respiratory cycles. Data are presented as the mean \pm SD. The significance of values was analyzed by a one-way ANOVA, followed by a Tukey-Kramer multiple comparisons test at a confidence level of *P* < 0.05 using the GraphPad InStat software program (GraphPad Software Inc., La Jolla, CA, USA).

Results

We examined C4 burst rate change in response to hypoxic stimulation in the brainstem-spinal cord preparation (n=7). The C4 burst rate was increased at 2-3 min after the start of hypoxic stimulation followed by a decrease: 3.7 ± 1.1 /min in control, 8.4 ± 1.3 /min at 2-3 min after hypoxic stimulation (P < 0.001, compared to control), and 4.2 ± 0.96 /min after 15 min of the hypoxia. A typical example is shown in Suppl. Fig 1.

 $(0\% O_2)$ followed by a decrease.