
   

Supplementary Material 

1 Model 

A generic multi-circuit model is described by the following equations: 
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(1) 

where the lower indexes a,b correspond to the population types (e – excitatory, i – inhibitory), 

whereas the upper indexes p,q are the number of a circuit. The variable p

ar  is the firing rate of a 
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population. The variable  p

a  is the average input current, and 
, , ,, ,p p p

a AMPA a NMDA a GABAA    are the 

components of this current corresponding to the AMPA, NMDA ,and GABA synapses respectively; 

, , ,, ,p p p

a AMPA a NMDA a GABAA    are the standard deviations of these current components (taken over the 

neurons of a population). The variables ,p px u  describe the synaptic short-term plasticity. 
raF  is the 

neuronal transfer function, ra  is the  time constant of the population firing rate dynamics, and 

, ,AMPA NMDA GABAA    are the synaptic time constants. 
abK  is the number of synaptic projections from 

the population b to the population a. 
, ,,pq pq

ae AMPA ae NMDAJ J are the weights of the AMPA and NMDA 

connections from the excitatory population of the circuit q  to the population a  of the circuit p . 

,

pq

ai GABAAJ  are the weights of the connections from the inhibitory population of the circuit q  to the 

population a  of the circuit p ;  ( ), , ,pq

ab SJ S AMPA NMDA GABAA  are the weights of the 

connections with the short term plasticity taken into account. The variables 
,

p

ax BG , 
,

p

ax BG  are the 

population average and standard deviation of the external background input from other brain areas 

that were not explicitly included into the model; ( ),

p

ax STIM t , ( ),

p

ax NOISE t , ( ),

p

ax OSC t  are the external 

input signals corresponding to the stimulus, the noise and the oscillations respectively. 
,

p

ax STIMA  is the 

stimulus amplitude, tSTIM,1 and tSTIM,2 are the start and end time of the stimulus; 
,

p

ax NOISEA  is the noise 

standard deviation, ( )p

ax t  is the Gaussian white noise with the zero average and unit variance, 

, ,p

ax OSC OSCA f  are the amplitude and frequency of the input oscillations, 
,1 ,2,OSC OSCt t  are the start and 

end time of the oscillatory input; ,F D   are the time constant of synaptic potentiation and depression 

respectively; U  is the coefficient affecting the ratio between the potentiation and the depression. 

For parameterization of the system, it is convenient to set the total level of excitation transmitted 

through the AMPA and NMDA receptors, as well as the ratio between the AMPA and NMDA 

components. Parameterization is also simplified by identity of the circuits. Thus, within-circuit 

connections could be described as follows: 
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where ,ae aiJ J  are the variables that characterize excitation and inhibition within the circuits; NMDAk  is 

a coefficient showing the contribution of the NMDA synapses in within-circuit excitation. 

For the two-circuit model, we describe the inter-circuit weights as follows: 
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where cross

eeJ  is the strength of the circuit interaction; cross

NMDAk  is a coefficient showing the contribution 

of NMDA current in circuit interaction. 

Our multi-circuit model contains of two clusters. Each cluster contains two groups of 8 circuits each 

(which we denote as C1, I1 for the cluster 1 and C2, I2 for the cluster 2). The circuits from the first 

groups of the clusters (C1, C2) receive a common noise input, and the circuits from the second 

groups (I1, I2) – independent noise inputs. 

For the multi-circuit model, we separately define the weights and NMDA coefficients for within-

cluster and inter-cluster connections: 
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where ,clust far

ee eeJ J  are the strengths of within-cluster and inter-cluster connections, respectively; 

,clust far

NMDA NMDAk k  are coefficients showing the contributions of the NMDA current in within-cluster and 

inter-cluster connections, respectively; pqc  is a binary coefficient showing presence or absence of a 

connection between circuits p  and q . All the connections are symmetric: pq qpc c= . 

The connectivity pattern  pqc  is chosen randomly according to the following rules: 

- All the connections are symmetric: pq qpc c= ; 

- Each circuit within a group (C1, C2, I1, I2) receives 3 inputs from circuits of the same group; 

- Different groups of the same cluster (C1-I1 and C2-I2) have 3 connections between each 

other, each circuit has either zero or one inter-group connection; 

- Same groups of the different clusters (C1-C2, I1-I2) have 8 connections with each other, each 

circuit of a group has exactly one inter-cluster connection; 

- Different groups of different clusters (C1-I2, C2-I1) are not connected. 

Parameters of the tonic input, noise and external stimulus are the same for all circuits: 
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External oscillations are delivered to the excitatory populations of the circuits only. Amplitude of 

oscillations is the same for all circuits.  
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We consider either in-phase or anti-phase oscillatory inputs to circuits. In the two-circuit model, the 

circuits could receive oscillations in the same phase or in the opposite phases: 
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         (7) 

In the multi-circuit model, all circuits from a cluster receive an input of the same phase, while the 

phases could be the same or the opposite for the two clusters. In our notations: 
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The noise input is delivered to the excitatory populations of the circuits only, with the same 

amplitude for all circuits: 
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In the two-circuit model, the noise inputs to the circuits could be common ( ( ) ( )1 2

ex ext t = ) or 

independently generated. In the multi-circuit model, the noise input is identical for all the circuits that 

belong to the groups C1, C2 ( ( ) ( )p COMMON

ex ext t = ), while each circuit from the groups I1, I2 receives 

independently generated noise. 

The model parameters were set in such a way as to ensure metastability and resonant properties 

of the active regime. First, we selected parameters that ensure bistability in a single circuit (Fig. 2B). 
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In this case, a pair of complex-conjugate eigenvalues for the active state should correspond to slowly 

decaying oscillations in the gamma band (see Fig. S1B,D for example orbits). After that, the excitatory-

to excitatory connection weight was decreased until the active state lost stability (Fig. 2A). Next, we 

considered two circuits and connected them with an excitatory connection, simultaneously decreasing 

the tonic inputs to the excitatory populations, in order to compensate for the inter-circuit excitation.  

In the multi-circuit models, the inter-circuit weights were further decreased (compared to the 

two-circuit model), given the increased number of connections per circuit. The inter-cluster weights 

were made smaller that the within-cluster weights to keep the clusters relatively independent from each 

other. The proportion between the number of inter-group and within-group connections was made 

small enough, so the circuits receiving common noise could profit from it; otherwise, input correlations 

would spread across the whole system due to inter-circuit connectivity, compromising the difference 

between the “common-noise” and “independent-noise” groups. The noise intensity was set just enough 

for the activity duration difference between the “common-noise” and “independent-noise” groups to 

become visible. Finally, the oscillatory input amplitude was selected such that the oscillations 

considerably increase the activity duration and the difference between the “common-noise” and 

“independent-noise” groups both in the case of fast and slow inter-cluster connections. 

The values of the model parameters are provided in Table 1. 

Numerical simulations of the models were carried out using a self-developed software package 

in the Matlab environment. Numerical integration was performed using the Euler method with 0.2 ms 

time steps for the single-circuit and two-circuit models, and with 0.5 ms steps for the multi-circuit 

models. 

Table 1. Model parameters 

Common parameters 

Parameter Value Parameter Value 

re  3 ms eK  400 

ri  1.5 ms iK  100 

AMPA

e  2 ms eeJ  2.8 A/cm2 

NMDA

e  50 ms ieJ  0.29 A/cm2 

GABAA

i  5 ms NMDAk  0.7 

mg   100 S/cm2 eiJ  -0.15 A/cm2 

meC  2 F/cm2 iiJ  -0.09 A/cm2 

miC  1 F/cm2 ,ix BG  0.25 A/cm2 

LE  -70 mV ,ex BG  0.02 A/cm2 
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tV  -50 mV ,ix BG  0.02 A/cm2 

rV  -60 mV F  450 ms 

U  0.03 D  200 ms 

Single-circuit model 

Parameter Value Parameter Value 

,ex BG  1 A/cm2 ,ex NOISEA  Control parameter 

,ex STIMA  5 A/cm2 OSCf  Control parameter 

,ix STIMA  1 A/cm2 ,ex OSCA  Control parameter 

,1STIMt  200 ms 
OSC 

 
0 or π 

,2STIMt  450 ms ,1OSCt  800 ms 

  ,2OSCt  Inf 

Two-circuit model 

Parameter Value Parameter Value 

,ex BG  0.8 A/cm2 ,ex NOISEA  0.014 A/cm2 

,ex STIMA  5 A/cm2 OSCf  40 Hz 

,ix STIMA  1 A/cm2 ,ex OSCA  Control parameter 

,1STIMt  200 ms OSC 0 or π 

,2STIMt  450 ms ,1OSCt  800 ms 

cross

eeJ  0.026 A/cm2 ,2OSCt  Inf 

cross

NMDAk  Control parameter   

Multi-circuit model 

Parameter Value Parameter Value 

,ex BG  0.8 A/cm2 ,ex NOISEA  0.02 A/cm2 

,ex STIMA  3.5 A/cm2 OSCf  40 Hz 

,ix STIMA  0.7 A/cm2 ,ex OSCA  0.18 A/cm2 
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,1STIMt  100 ms 
OSC 

(within-cluster) 
0 

,2STIMt  450 ms 
OSC 

(inter-cluster) 
0 or π 

clust

eeJ  0.015 A/cm2 ,1OSCt  550 ms 

clust

NMDAk  0 ,2OSCt  Inf 

far

eeJ  0.003 A/cm2   

far

NMDAk  0.1 or 1   

 

2 Calculation of the transfer functions 

The neuronal transfer functions relate the synaptic input to the value of the output firing rate. 

In our case, the arguments of the transfer function are the average synaptic current    and the standard 

deviations of the excitatory AMPA-current AMPA  and the inhibitory GABAA-current GABAA . To 

determine the value of the transfer function for a certain combination ( ), ,AMPA GABAA    we performed 

a simulation of a single leaky integrate-and-fire (LIF) neuron that receives a tonic current input   and 

two noisy inputs with the zero average, standard deviations ,AMPA GABAA  , and time constants 

,AMPA GABAA  : 

( )

:

2 ( )

2 ( )
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TH R

a a
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AMPA AMPA AMPA AMPA AMPA
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GABAA GABAA GABAA GABAA GABAA

dV
C g V I I

dt

if V V V V

dI
I t

dt

dI
I t

dt



   

   


= − + +


= 




= − +



= − +

,  (10) 

where maC  is the membrane capacity, Lag  is its conductivity, 
TH

aV  is  a spike generation threshold, 
R

aV  

is a reset voltage, ,AMPA GABAAI I  are the membrane currents through the AMPA- and  GABAA-receptors 

respectively, and ( ), ( )AMPA GABAAt t   are independent implementations of Gaussian white noise with 

zero mean and unit variance. The parameter set is presented in the Table 2. 

We carry out a simulation of the system (10) for different combinations ( ), ,AMPA GABAA   , 

located in the nodes of a rectangular grid, and for each combination we stored the resulting firing rate. 

This procedure was performed twice: for an excitatory and for an inhibitory neuron. Thus, two three-

dimensional arrays ˆ ˆ,re riF F  were obtained. In the process of simulating the population model (1) and 
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analyzing the phase plane, we determined the values of the functions ,re riF F  at the required points 

using cubic interpolation between the precomputed values ˆ ˆ,re riF F  at the nearest grid nodes.  

The shapes of the resulting transfer functions ( ), ,re AMPA GABAAF     and ( ), ,ri AMPA GABAAF     

as functions of  , given constant values of ,AMPA GABAA  , are presented in Figs. 2C,D, respectively. 

For this demonstration, we considered again a bistable single-circuit model (obtained by increasing 

eeJ ). We plotted the shapes of 
reF  and 

riF  as functions of   for two different combinations of 

,AMPA GABAA   – one corresponding to the background state (solid curves in Figs. 2C,D) and the other – 

to the active state (dashed curves in Figs. 2C,D). 

Table 2. The parameter set for computing of the transfer functions  

Parameter Value Parameter Value 

meC  2 µF/cm2 Le LiE E=  -70 mV 

miC  1 µF/cm2 AMPA  2 ms 

Le Lig g=  100 µS/cm2 NMDA  50 ms 
TH TH

e iV V=  -50 mV GABAA  5 ms 

R R

e iV V=  -60 mV   

 In our model, we assume that NMDA current variance is negligible and do not use it as an 

additional argument of the transfer functions. To justify it, we consider the following ratio: 

NMDA e e NMDANMDA NMDA e e NMDA AMPA AMPA AMPA

AMPA AMPA e e AMPA NMDA NMDA NMDAAMPA e e AMPA

J K r J K r

J K rJ K r

    

    
= = = . (11) 

If we assume that the mean currents are of the same order of magnitude ( ~1AMPA NMDA  ) and the 

NMDA time constant is much larger than the AMPA time constant ( 0AMPA NMDA   ), then we 

conclude from (11) that 0AMPA NMDA   . 

 

3 Phase portrait analysis 

For a deeper understanding of the system's behavior, we visualized a phase plane ( ),e ir r  with 

the characteristic curves (Figs. 2A,B, S1). For each combination ( ),e ir r , we determined the values of 

all other variables, at which their time derivatives turn to zero: 
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.  (12) 

We defined er -curve as the set of points on the plane ( ),e ir r  for which the time derivative of 

er  is zero, taking into account the conditions (12). Similarly, we defined ir - curve as the set of points 

for which the time derivative of ir  is zero, and the conditions (12) are satisfied. Thus, we obtained the 

following expressions for both curves: 

( ) ( ) ( )( )

( ) ( ) ( )( )

* * *

, ,

* * *

, ,

, , , , ,

, , , , ,

e re e e i e AMPA e i e GABAA e i

i ri i e i i AMPA e i i GABAA e i

r F r r r r r r

r F r r r r r r

  

  

 =


=

. (13) 

The intersections of the curves (two for a bistable system, one for metastable systems) correspond to 

the steady-states. 
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Figure S1. Damped oscillations on a phase plane. The legend is the same as in Fig. 2. (A, C) The 

system we analyzed in the paper, with the single steady-state (background) and the region of slowly 

decaying activity (where the re- and ri-curves are close to each other). The presented orbit 

approaches ri-curve in the region of high firing rates, demonstrating damped oscillations, and then 

goes towards the background steady state, staying close to ri-curve. (B, D) The system with increased 

recurrent excitation, with two steady-states (background and active). The presented orbit 

demonstrates damped oscillations around a point close to the active state and the converges to the 

active state itself. Since the presented phase plane is a projection of multi-dimensional state space, 

the orbits have self-intersections. For both systems, kNMDA was increased from the original value 

0.7 to 0.73, for illustrative purposes (to increase the damping ratio). 
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Figure S2. Behavior of the two-circuit model with fast inter-circuit connections under input 

oscillations of different amplitudes. Left column: the circuits receive oscillations in the same phase, 

right column – in opposite phases. Black curves: the circuits receive independent noise signals; red 

curves – a common noise signal. A, B – post-stimulus activity duration, averaged over the two 

circuits. The activity of a circuit is considered to be terminated when the firing rate of the excitatory 

population, smoothed with 100-ms time window, falls below 3 Hz. C, D – inter-circuit synchrony 

measured as the phase-locking value between the excitatory firing rate signals. E, F – Mean phase 

difference between the excitatory firing rate signals. G, H – Mean amplitude of the entrained 

oscillations of the excitatory firing rate signal. For calculation of C – H, the firing rate dynamics of 

the excitatory population of each circuit was bandpass-filtered (30 – 50 Hz), after which the Hilbert 

transform was applied to extract the amplitude and phase of the filtered signal at each time moment. 
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Figure S3. Behavior of the two-circuit model with slow inter-circuit connections under input 

oscillations of different amplitudes. The legend is the same as in Fig. S2. 

 


