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APPENDICES
A. Proof on proper metric dext1

PROOF. We prove that dext is a proper metric by verifying three properties:2

1. (Positive Definiteness) It is apparent that dext(f1, f2) ≥ 0. By Theorem 1, there exists γ12, such that3
f1 = (f2; γ12). Therefore, dext(f1, f2) = 0⇔ ‖1−

√
γ̇12‖ = 0⇔ γ12(t) = γid. Hence, f1 = f2.4

2. (Symmetry) ‖1−
√
γ̇21‖2 = ‖1−

√
γ̇−112 ‖2 =

∫ 1
0

(
1−

√
γ̇−112 (s)

)2

ds = ‖1−
√
γ̇12(t)‖2. Therefore,5

dext(f1, f2) = dext(f2, f1).6

3. (Triangle Inequality) Let f2 = f1 (γ12(t)), f3 = f2 (γ23(t)), γ13 = γ12 ◦ γ23. Then, dext(f1, f3) =7
‖1−
√
γ̇13‖ = ‖1−

√
(γ̇12 ◦ γ23) γ̇23‖ ≤ ‖1−

√
γ̇23‖+‖

√
γ̇23−

√
γ̇13‖ = ‖1−

√
γ̇23‖+‖1−

√
γ̇12‖.8

Note that ‖
√
γ̇23 −

√
γ̇13‖ = ‖ (1, γ23)− (1, γ13) ‖ = ‖ (1, γ23)− (1, γ12 ◦ γ23) ‖ = ‖1−

√
γ̇12‖ (by9

isometry) Thus, dext(f1, f3) ≤ dext(f1, f2) + dext(f2, f3).10

B. Proof on the consistency of f̂11

LEMMA 1. Let g be a probability density function on [0, 1]. {Xi}ni=1 are a set of i.i.d. random variables
with density g. If ĝn is a modified kernel estimate with optimal bandwidth given in Algorithm 2, then∫ 1

0
|ĝn(t)− g(t)|dt a.s.−−→ 0 (when n→∞)

PROOF. Let g̃n(t) = 1
nhn

∑n
i=1K( t−Xihn

) be the classical kernel estimator with kernel function K and12
optimal bandwidth hn (i.e. hn → 0 and nhn → ∞). Then, we can obtain from Equation 3.84 of that13 ∫ 1
0 |g̃n(t)− g(t)|dt a.s.−−→ 0.14

As K(t) = 0 when |t| < 1, we have15 ∫ 1

0
|ĝn(t)− g̃n(t)|dt

=

∫ hn

0
|ĝn(t)− g̃n(t)|dt+

∫ 1

1−hn
|ĝn(t)− g̃n(t)|dt

+

∫ 1−hn

hn

| 1

n+ 1
g̃n(t) +

1

n+ 1
|dt

≤
∫ hn

0
ĝn(t)dt+

∫ hn

0
g̃n(t)dt+

∫ 1

1−hn
ĝn(t)dt+

∫ 1

1−hn
g̃n(t)dt+

2

n+ 1
. (1)

Here we will show that the first term goes to 0 (a.s.). Indeed,16 ∫ hn

0
ĝn(t)dt =

∫ hn

0

1

nhn

n∑
i=1

K(
t−Xi

hn
)dt =

∫ hn

0

1

nhn

∑
Xi≤2hn

K(
t−Xi

hn
)dt

≤
∫ 1

0

1

nhn

∑
Xi≤2hn

K(
t−Xi

hn
)dt =

1

n

∑
Xi≤2hn

1 =
1

n

1∑
i=0

1{Xi≤2hn}
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where 1{·} is the indicator function. By the Strong Law of Large Numbers on triangular arrays,

1

n

n∑
i=0

(1{Xi≤2hn} − E1{Xi≤2hn})→ 0.(a.s.)

As E1{Xi≤2hn} =
∫ 2hn
0 f(t)dt→ 0, we have

∫ hn
0 ĝn(t)dt

a.s.−−→ 0. The convergence to 0 for the second to

fourth terms on the RHS of Eqn. (1) can be similarly proven, and therefore
∫ 1
0 |ĝn(t)− g̃n(t)|dt a.s.−−→ 0.

Finally, we have∫ 1

0
|ĝn(t)− g(t)|dt ≤

∫ 1

0
|ĝn(t)− g̃n(t)|dt+

∫ 1

0
|g̃n(t)− g(t)|dt a.s−−→ 0.

LEMMA 2. Let G and Ĝn denote the cumulative distribution functions of g and ĝn in Lemma 1,
respectively. Assume the density g is continuous and for any t ∈ [0, 1], 0 < m ≤ g(t) ≤ M < ∞
(Condition 2 in Section 2.2). If G and Ĝn are invertible and the inverse functions are differentiable, then

∫ 1

0
(

√
˙̂
G
−1
n (t)−

√
Ġ−1(t))2dt

a.s.−−→ 0 (when n→∞)

PROOF. To simplify notation, we let F = G−1, F̂n = Ĝ−1n , f = Ḟ = Ġ−1, and f̂n =
˙̂
Fn =

˙̂
G
−1
n .17

For any t ∈ [0, 1], |Ĝn(t) − G(t)| ≤
∫ 1
0 |ĝn(t) − g(t)|dt a.s.−−→ 0 (by Lemma 3). That is, Ĝn ⇒ G18

(uniform convergence) almost surely. By the theory on convergence of inverse functions, we also got that19
F̂n ⇒ F (a.s.).20

By definition, G(F (t)) = t and Ĝn(F̂n(t)) = t. Using the chain rule, we have g(F (t))f(t) = 1 and21
ĝn(F̂n(t))f̂n(t) = 1. Therefore,22 ∫ 1

0
|f̂n(t)− f(t)|dt

=

∫ 1

0
| 1

ĝn(F̂n(t))
− 1

g(F (t))
|dt

≤
∫ 1

0
| 1

ĝn(F̂n(t))
− 1

g(F̂n(t))
|dt+

∫ 1

0
| 1

g(F̂n(t))
− 1

g(F (t))
|dt

Here we will show that each integration in the right-hand side indeed converges to 0 (a.s.). By Lemma 1,23 ∫ 1

0
| 1

ĝn(F̂n(t))
− 1

g(F̂n(t))
|dt

=

∫ 1

0
| 1

ĝn(s)
− 1

g(s)
|ĝn(s)ds (by change of variable)

=

∫ 1

0

1

g(s)
|ĝn(s)− g(s)|ds ≤ 1

m

∫ 1

0
|ĝn(s)− g(s)|ds a.s.−−→ 0

2
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By assumption, g is continuous and positively bounded. Hence, 1/g is also continuous. This continuity24
is uniform because the domain [0, 1] is compact. That is, for any ε > 0, there exists δ > 0, such that for25
all a, b ∈ [0, 1] with |a− b| < δ, |1/g(a)− 1/g(b)| < ε. We have shown that F̂n ⇒ F (a.s.). Hence, with26
probability 1, there exists an integer N such that for any n > N and t ∈ [0, 1], we have |F̂n(t)−F (t)| < δ.27 ∫ 1
0 |

1
g(F̂n(t))

− 1
g(F (t)) |dt ≤

∫ 1
0 εdt = ε. Therefore, we have shown that28

∫ 1

0
| 1

g(F̂n(t))
− 1

g(F (t))
|dt a.s.−−→ 0.

Finally, based on the simple inequality (
√
a−
√
b)2 ≤ |a− b|, we have∫ 1

0
(

√
f̂n(t)−

√
f(t))2dt ≤

∫ 1

0
|f̂n(t)− f(t)|dt a.s.−−→ 0.

LEMMA 3. Let {γi} be a sequence of warping functions that satisfy Condition 3 in Section 2.2, and γ̄ be
the Karcher mean of {γ−1i }. Then γ̄ converges to γid almost surely. That is,

||(1, γ̄)− 1|| a.s.−−→ 0 (when n→∞)

PROOF. By assumption, E(
√
γ̇−1i (t)) ≡ β > 0, i = 1, · · · , n. Let Sn = nγ̄ =

∑n
i=1

√
γ̇−1i . As29

{
√
γ̇−1i } are i.i.d.,30

E
(
‖Sn − nβ‖4

)
= E

∥∥∥∥∥
n∑
i=1

(√
γ̇−1i − β

)∥∥∥∥∥
4


= nE

(∥∥∥∥√γ̇−11 − β
∥∥∥∥4
)

+ n(n− 1)

(
E

(∥∥∥∥√γ̇−11 − β
∥∥∥∥2
))2

+2n(n− 1)

(
E

(∫ 1

0

(√
γ̇−11 (t)− β

)(√
γ̇−12 (t)− β

)
dt

)2
)

As ||
√
γ̇−11 || = 1, there exist positive constants C and N , such that E(||Sn − nβ||4) < Cn when n > N .31

Using the generalized Chebyshev inequality, for any ε > 0 and n > N ,

P

(∥∥∥∥Sn − nβn

∥∥∥∥ > ε

)
≤ 1

(nε)4
E(||Sn − nβ||4) ≤

C

ε4n2
.

This indicates that
∑∞

n=1 P (||Sn − nβ|| ≥ nε) < ∞. By the Borel-Cantelli lemma, P (||Sn − nβ|| ≥32

nε i.o.) = 0. Therefore, || 1n
∑n

i=1

√
γ̇−1i − β||

a.s.−−→ 0. Finally, we have33

||(1, γ̄)− 1|| = ||
√

˙̄γ − 1|| =

∥∥∥∥∥∥
1
n

∑n
i=1

√
γ̇−1i

1
n ||
∑n

i=1

√
γ̇−1i ||

− 1

∥∥∥∥∥∥ a.s.−−→ 0.
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LEMMA 4. Assume Ym is a random variable following a Poisson distribution with mean Λm. If34
λm ≥ α log(m), α > 1 for sufficiently large m (Condition 4 in Section 2.2), then Ym → ∞ (a.s.) when35
m→∞.36

PROOF. Based on the Poisson density formula, for any K = 1, 2, · · · , P (Ym ≤ K) = e−λm
∑K

k=0
λkm
k! .37

By assumption, λm ≥ α log(m), α > 1 for sufficiently large m. It is apparent that when m is sufficiently38

large, e−
α/2
1+αλm

∑K
k=0

λkm
k! < 1. Hence,39

m1+α/2P (Ym ≤ K) = m1+α/2e−λm
K∑
k=0

λkm
k!

= e−
1+α/2
1+α λm+(1+α/2) logm

(
e−

α/2
1+αλm

K∑
k=0

λkm
k!

)
≤ 1 · 1 = 1.

Consequently, for sufficiently large m, P (Ym ≤ K) ≤ 1
m1+α/2 . Hence,

∑∞
m=1 P (Ym ≤ K) <∞. By the

Borel-Cantelli lemma,
P (lim sup{Ym ≤ K}) = P (Ym ≤ K i.o.) = 0.

Equivalently, we have P (Ym > K eventually) = 1, for any K = 1, 2, .... Therefore,

lim
m→∞

Ym =∞. (a.s.)

4


