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APPENDICES
1 A. Proof on proper metric d..;

2 PROOF. We prove that d.,; is a proper metric by verifying three properties:

3 1. (Positive Definiteness) It is apparent that de.¢(f1, f2) > 0. By Theorem 1, there exists 7y;2, such that
4 f1 = (f2; m2). Therefore, deat(f1, f2) = 0 < |[1 — VY12l = 0 & 712(t) = 7ig- Hence, f1 = fo.
2

: . 1 _ -
5 2. (Symmetry) 11 — il = 11— /50 1 = J (1-—\/wa;<s{) ds = |[1 = \/312(8)|>. Therefore,
6 demt(flafZ) :demt(anfl)-
7 3. (Triangle Inequality) Let fo = f1 (y12(1)), f3 = fa (723(t)), 713 = 712 © Y23. Then, dest(f1, f3) =
8 11— vFsll = 11— /(912 0 v23) Fesll < 11— vA2sll+ (VA28 — VA3l = (11— vAasll + 11— vFnz-
9 Note that [|v/423 — V13l = | (1,723) — (L, 713) | = [| (1,723) — (1,712 0723) [| = [[1 — VA2 (by
10 isometry) Thus, deyt(f1, f3) < dewt(f1, f2) + dext(f2, f3)-

11 B. Proof on the consistency of f
LEMMA 1. Let g be a probability density function on [0, 1]. {X;}?_, are a set of i.i.d. random variables
with density g. If g, is a modified kernel estimate with optimal bandwidth given in Algorithm 2, then

/ |gn (1) — g(t)|dt =25 0 (when n — o)

12 PROOF. Let g,(t) = n}ll i K (th ) be the classical kernel estimator with kernel function K and
13 0pt1ma1 bandwidth A, (i.e. hy, — 0 and nhy, — o0). Then, we can obtain from Equation 3.84 of that
14 fo |Gn(t) — g(t)|dt =25 0.

15 As K(t) = 0 when [t| < 1, we have

h h 1 1
n R n B R B 2
< [ %wﬁ+/ %®ﬁ+/ v+ [ .0 | W)
0 0 1—hn, 1—hy n+1

16 Here we will show that the first term goes to O (a.s.). Indeed,
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where 1.y is the indicator function. By the Strong Law of Large Numbers on triangular arrays,

1 n
n Z(I{X,»th} - El{XiSth}) — 0.(a.s.)
=0

As Elix,<op,y = OQh” f(t)dt — 0, we have foh” gn(t)dt £25 0. The convergence to 0 for the second to

fourth terms on the RHS of Eqn. (I)) can be similarly proven, and therefore fol G (1) — Gn(t)|dt L2 0.
Finally, we have

1 1 1
/O Gn(t) — g(t)|dt < /0 6 (t) — Gu(®)ld + /0 G (t) — g(B)|dt 25 0.

LEMMA 2. Let G and G,, denote the cumulative distribution Jfunctions of g and g, in Lemma
respectively. Assume the density g is continuous and for any t € [0,1], 0 < m < g(t) < M < o
(Condition 2 in Section 2.2). If G and G, are invertible and the inverse functions are differentiable, then

-1

/01(\/% - \/GT(t))zdt 2250 (when n — 00)

17 PROOF. To simplify notation, we let F' = G 1 Fn = G,jl, f= F =G, and fn = Fn =G, .
18 For any t € [0,1],|Gn(t) — G(t)] < fol lgn(t) — g(t)]dt <25 0 (by Lemma 3). That is, G, =% G
19 (uniform convergence) almost surely. By the theory on convergence of inverse functions, we also got that
20 F, = F (a.s.).

21 By definition, G(F(t)) = ¢ and Gn(Fy,(t)) = t. Using the chain rule, we have g(F(t))f(t) = 1 and
22 Gn(Fy(t)) fn(t) = 1. Therefore,
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23 Here we will show that each integration in the right-hand side indeed converges to 0 (a.s.). By Lemmall]

1 1 1
JR e
0 gn<Fn(t)) g(Fn(t»
1

1
1
= / | —— — ——|gn(s)ds (by change of variable)
0 gnls) g(s)
1

1 I as.
= [ il —a9lds < o [ lauts) — atolds <50
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By assumption, ¢ is continuous and positively bounded. Hence, 1/g is also continuous. This continuity
is uniform because the domain [0, 1] is compact. That is, for any ¢ > 0, there exists 6 > 0, such that for
all a,b € [0,1] with |a — b| < 0,|1/g(a) — 1/g(b)| < e. We have shown that F}, = F (a.s.). Hence, with
probability 1, there exists an integer N such that for any n. > N and ¢ € [0, 1], we have | F),(t) — F(t)] < 6.
fol | 1 pyldt < fol edt = €. Therefore, we have shown that

/1| Ll e
o g(Fnt)  g(F(t) '

Finally, based on the simple inequality (\/a — /b)?

/F \/_dt</|fn — f(®)]dt L5 0.

LEMMA 3. Let {7;} be a sequence of warping functions that satisfy Condition 3 in Section 2.2, and 7 be
the Karcher mean of {~y; 1. Then 7 converges to ~;q almost surely. That is,

g(Fn(t))

, we have

[1(1,%) — 1]| L300 (When n — o0)

PROOF. By assumption, E(y/4; *(t)) = 8 > 0,i = 1,--- ,n. Let S, = ny = >0 /4, ' As
{\/4; '} areiid,

4

2 (|15, - n6\|4) - ; (W -5)
+on(n—1) (E (/ 1( wt)—ﬁ)( 510 - ) dt))

As [|\/A47 || = 1, there exist positive constants C' and N, such that E(||S,, — nf||*) < Cn whenn > N.

Using the generalized Chebyshev inequality, for any ¢ > O and n > N,
1 C
> €) < o Bllsn - ndllY) < oz

Sn —np
P ( (ne) etn?

n
This indicates that Y, P(]|S, — nﬁ|| > ne) < oo. By the Borel-Cantelli lemma, P(||S,, — ng|| >
ne i.0.) = 0. Therefore, ||~ LS~ /4t = B]] =25 0. Finally, we have

DRy

=1 ’Y .8.

I =1 = IVi-1l= |- 1 =20
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34 LEMMA 4. Assume Y,, is a random variable following a Poisson distribution with mean A,,. If
35 A\ > alog(m),a > 1 for sufficiently large m (Condition 4 in Section 2.2), then Y, — oo (a.s.) when
36 m — oo.

k
37 PROOF. Based on the Poisson density formula, for any ' = 1,2,--- , P(Y;, < K) = ¢~ *m ZkK:O Ak—’?
38 By assumption, \,,, > alog(m), a > 1 for sufficiently large m. It is apparent that when m is sufficiently

7 k
39 large, e THa M YN 4m < 1. Hence,

K \k
ml+a/2P(Ym S K) — m1+a/2€—>\m Z );{;_7;74
k=0

K \k
_ - 1-11,-f6<2)\m_|_(1—|—a/2) log m (e_oﬁ/\m Z );{:_77'1>
k=0

< 1-1=1.

Consequently, for sufficiently large m, P(Y,, < K) < W Hence, >~ P(Y;;, < K) < co. By the
Borel-Cantelli lemma,
P(limsup{Y;, < K}) = P(Y;, < K i.0.) =0.

Equivalently, we have P(Y,,, > K eventually) = 1, for any K = 1,2, .... Therefore,

lim Y, = oco. (a.s.)
m—o0




