Supplementary Material ## 1. Supplementary Figures and Tables | Roboter
Name | Function | Company | Literature | Source | |--------------------|---|--|----------------------------|----------| | | Introducing needles and catheters into deformable tissues such as blood vessels to draw blood or deliver fluids by using ultrasound | Department of Biomedical Engineering, Rutgers University of New Jersey | Chen et al. (1) | | | SleepSmart | Multi-sensor mattress pad to
diagnose chronic sleep disorders
by detecting data such as heart
rate, breathing rate, body
orientation and index of
restlessness | | Van der Loos et al.
(2) | | | Morpheus | Mattress actuation system to encourage a person to roll over in bed to alleviate snoring based on acoustic sensor data analysis | | (2) | | | | Measuring vital signs | University of
Auckland, New
Zealand | Broadbent et al. (3) | | | ElliQ | Social tasks: virtual communication, proactive suggestions, entertainment and health activities | Intuition Robotics | | | | | Organizational tasks: medication reminders, apointment scheduling, cab calls | | | | | ROBEAR | Lifting and carrying patients (nursing robot): elderly and handicapped | RIKEN and
Sumitomo Riko
Limited | | | | RIBA / RIBA-
II | Lifting and carrying patients (nursing robot) | RIKEN | | https:// | ## Supplementary Material | SAM | remote monitoring, physical safety (preventing falls), and virtual communication | Luvozo | roboticsbi z.com/ top- seven- | |---------------------------------|---|---|---| | Zora | Interactive caregiver: leading physical therapy classes, activities and exercises, entertaining patients (reading, TV etc.), educational tasks | Zora Bots / Oz
Robotics | companio n-and- social- robots- for- | | iPal | Caregiver: social companion, educator, safety monitor, health and emergency service and virtual communication | Avatar Mind | elderly-
people/ | | Care-O-Bot | Household tasks: delievering food, drinks and medications to patient, assisting in cooking and cleaning | Fraunhofer Institute for Manufacturing Engineering and | | | | Health care: emergency calls, virtual communication | Automation | | | BUDDY | Detection of falls or unusual events, alert emergency service, home protection, tracking capabilities | Blue Frog Robotics | | | Xenex Germ-
Zapping
Robot | Disinfection of entire hospital rooms within minutes using pulsed, full-spectrum UV rays that kill a range of infectious bacteria and viruses | XENEX Disinfection Systems | https://
online-
engineeri | | PARO
Therapeutic
Robot | An animal-like robot that provides the benefits of animal therapy as a treatment for depression or other mental illness or as a method to recover better from surgery | National Institute of
Advanced Industrial
Science
and Technology
(AIST) | ng.case.e du/blog/ medical- robots- making- a- difference | | TUG | Ferrying supplies such as meals,
linens, lab samples, waste and
other items/materials | Aethon | difference | | GermFalcon | Cleaning robot using UVC light to kill viruses and bacteria | Dimer UVC
Innovations | https:// www.me dicaldevi ce- network.c om/ features/ coronavir us- robotics/ | |------------|---|--------------------------|---| |------------|---|--------------------------|---| Table S1. Examples of assistive medical robots used in various fields of healthcare. | Reproductive number ($R_0 = 4.4$) | | | | | | |-------------------------------------|--------------------------------------|--------------------------------|----------------------------------|--|--| | | Non-
spreading | Infected individuals | | | | | Scenario | Ratio of non-
spreading
trials | Mean % of infected individuals | Median % of infected individuals | | | | No robotic assistance | 0.10 | 71 | 78 | | | | Assist Rand 5 NUR | 0.16 | 66 | 76 | | | | Assist Top 5 NUR | 0.22 | 57 | 71 | | | | Assist Top 3 NUR-Rand 2 MD | 0.21 | 60 | 71 | | | | Assist all NUR-PAT contacts | 0.23 | 47 | 57 | | | Table S2. Effect of robotic interventions in different scenarios. Percentage of non-spreading trials, mean and median percentage of infected individuals in the geriatric. Results for $R_0 = 4.4$ over 100 trials. | Reproductive number ($R_0 = 4.4$) | | | | | | |-------------------------------------|---|---------------|----------------|---------------|--| | | I ₃₀ (number of active infections at day 30) | | | | | | Scenario | NUR | MD | PAT | ADM | | | No robotic assistance | 11.8 ± 0.4 | 6.8 ± 0.2 | 11.3 ± 0.3 | 2.7 ± 0.1 | | | Assist Rand 5 NUR | 9.0 ± 0.4 | 6.2 ± 0.3 | 9.2 ± 0.4 | 2.6 ± 0.2 | | | Assist Top 5 NUR | 6.7 ± 0.3 | 5.2 ± 0.4 | 5.5 ± 0.4 | 2.0 ± 0.2 | | | Assist Top 3 NUR-Rand 2 MD | 9.4 ± 0.4 | 4.4 ± 0.3 | 8.1 ± 0.4 | 2.5 ± 0.1 | | | Assist all NUR-PAT contacts | 10.4 ± 0.4 | 6.6 ± 0.3 | 4.3 ± 0.3 | 2.7 ± 0.1 | | Table S3. Splitting of infectious cases on day 30 (I_{30}) by category. Results for $R_0 = 4.4$ over 100 trials. | Parameter | Description | Value | |------------------|---|---------| | β | Probability of disease transmission upon contact with Latent or Infected individual | 0.0015 | | α | Proportion of asymptomatic infections | 0.8 | | $ au_{ m E}$ | Average latency from Exposed to Latent | 2 days | | $ au_{ m L}$ | Average latency from Latent to Infected | 5 days | | $ au_{ m Iu}$ | Average latency from Asymptomatic Infected to Recovered | 12 days | | $ au_{ ext{Id}}$ | Average latency from Symptomatic Infected to Recovered | 7 days | Table S4. Default model parameters. Figure S1. Temporal evolution of infection spread across the network for different scenarios. R_0 = 3.4. Number of active infected cases in 5 different scenarios as a function of the days passed since the first infection in the population at day 0. Average over 100 trials. ## **References for Supplementary Information:** - 1. A. I. Chen, M. L. Balter, T. J. Maguire, M. L. Yarmush, Deep learning robotic guidance for autonomous vascular access. *Nat. Mach. Intell.* (2020), doi:10.1038/s42256-020-0148-7. - 2. H. F. Machiel Van der Loos, N. Ullrich, H. Kobayashi, Development of sensate and robotic bed technologies for vital signs monitoring and sleep quality improvement. *Auton. Robots* (2003), doi:10.1023/A:1024444917917. - 3. E. Broadbent, J. R. Orejana, H. S. Ahn, J. Xie, P. Rouse, B. A. Macdonald, in *Proceedings IEEE International Workshop on Robot and Human Interactive Communication* (2015).