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Supplementary Material  

1. Physics description of ECGI 

Electrocardiographic imaging (ECGI) is a medical tool that allows estimating electrical activity on 

the heart surface based on non-invasive signals obtained from 3D geometries of the torso (Rudy, 

2013). This technology has been widely used in the study of several heart diseases, as it allows 

analyzing the electrical activity of the heart in a way comparable to invasive techniques 

(catheterization), but with greater coverage and offering improved versatility, as it allows the study 

and planning of surgical therapy before the procedure (Rudy, 2013). 

The physics of ECGI is governed by the Maxwell electromagnetic wave equation, which allows 

us to infer that the average value of the electric potential around a point P is equal to the value of 

the potential at t point P, this is, the electromagnetic wave equation is given by 

𝛻2𝜙 =  0    (1) 

where 𝛻2 represents the Laplacian operator and 𝜙 (mV/m) is the electric field generated by the 

excitation of the heart, and which is propagated to the surface of the body through a volume with 

passive electrical conduction (Rudy and Burnes, 1999; Rudy, 2013). In the ECGI method, 

potentials in the heart 𝜙𝐶  (𝑚𝑉) are calculated using the Laplace equation within the torso volume 

conductor, using both the electrical potentials from the torso, 𝜙𝑇(𝑚𝑉), and the geometric 

relationship between the 3D surfaces of the heart and torso ( 𝐴𝑇𝐶) (Rudy and Burnes, 1999; Rudy, 

2013). The first step in this procedure is the discretization of the 3D surfaces of the heart and torso 

into triangular elements allowing the relationship of 𝜙𝑇 and 𝜙𝐶to be calculated through the transfer 

matrix 𝐴𝑇𝐶  as follows,  

                                            𝜙𝑇 =   𝐴𝑇𝐶  𝜙𝐶                        (2) 

Discretization is achieved through the Finite Difference, Finite Element or Boundary Element 

Methods (FDM, FEM and BEM, respectively), resulting in a linear relationship matrix (this 

transfer matrix 𝐴𝑇𝐶), which contains the geometric information and electrophysiological properties 

of the volume conductor that relates the two surfaces (atrium and torso) (Rudy and Burnes, 1999; 

Rudy, 2013).The direct solution of Eq. (2) for calculating 𝜙𝑇 is a well-posed mathematical 

problem in the sense of Hadamard (that is, the solution exists, is unique and stable) (Rudy and 

Burnes, 1999; Kabanikhin, 2008; Rudy, 2013). This means that given a geometric relationship 

between the heart and the torso and a set of potentials on the epicardium, the potentials on the 

surface of the torso can be calculated with high accuracy (Rudy and Burnes, 1999; Rudy, 2013). 

This does not hold for the inverse problem, because typically 𝐴𝑇𝐶is not a rectangular matrix, or if 

it is square, it is ill-conditioned or degenerate. Moreover, we must observe that assuming 𝐴𝑇𝐶  as a 

constant matrix reality is simplified, since e.g. there is an interaction between 𝐴𝑇𝐶  and 

𝜙𝐶(movement and contraction of the heart) and 𝐴𝑇𝐶is dynamic due to respiration. A further 

complicating factor is that we can only estimate 𝐴𝑇𝐶 .  

The objective of ECGI is to obtain the epicardial potentials (𝜙𝐶) from the potentials measured on 

the torso (𝜙𝑇) (Bertero and Boccacci, 1998). As argued, this inverse problem is ill-posed, leading 
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to stability issues, i.e. small perturbations either in the measurement of the torso signals (i.e. noise 

and / or position of the electrodes), or in the 3D geometries of the torso and heart, can result in 

large errors in the calculation of 𝜙𝐶  (Colli-Franzone et al., 1985; Rudy and Burnes, 1999; 

Kabanikhin, 2008; Pullan et al., 2011; Rudy, 2013).  Moreover, the solution for 𝜙𝐶  in (Eq. 2) may 

not exist for all elements of 𝜙𝑇, or there might be many solutions.  

Regularization methods are used to force a unique and smooth solution, with Tikhonov 

regularization (Tikhonov and Arsenin, 1977) being one of the main set of methods for this aim, as 

it performs as well as other more complex methods under realistic fibrillatory conditions (Figuera 

et al., 2016). This method imposes limits in 𝜙𝐶  delimiting the amplitudes or derivatives of the 

epicardial potentials in space, time, or both, to be within the electrophysiological and electric field 

limits of the heart (Rudy, 2013). Regularization is an approach to find an approximation of 𝜙𝐶  that 

depends continuously on the noisy measurement data 𝜙𝑇, but the chosen regularization should 

bring the estimate of 𝜙𝐶  as close to its true value as the noise levels (on both 𝜙𝐶  and 𝐴𝑇𝐶) permit. 

Prior information can be added to the regularization, such as further limiting the solution space 

(Kabanikhin, 2008). Through regularization, it is possible to find a solution to the inverse problem 

of electrocardiography.  

Figure 1 in the main text illustrates the standard steps needed for the implementation of ECGI 

systems. Values in the 𝐴𝑇𝐶  correspond to estimated electrophysiological properties of nodes in a 

mesh describing the heart and body geometries as well as tissues and organs between the heart and 

body surface. The mesh is usually generated from medical images (either CT or MRI). Through 

this approach, the regularized inverse of the matrix that relates the geometries of the torso and 

heart (𝐴𝑇𝐶)  in Eq. (2) can be calculated. After calculating the regularized inverse matrix, the 

estimation of the potentials in the atrium  𝜙𝐶  can be estimated through the product of this matrix 

with the potentials acquired from the torso 𝜙𝑇 using body surface potential mapping (BSPM) 

systems. 

Calculation of the elements of the transfer matrix 

To calculate the elements of transfer matrix 𝐴𝑇𝐶 , it is necessary to consider first the unknown 

potential 𝜙(�⃗�)(mV) given by the solution to the following contour integral equation (de Munck 

1992): 

Ω(𝑆;�⃗�) 

2𝜋
𝜙(�⃗�) = 2𝜙∞(�⃗�) −

1

2𝜋
∯

𝑆\∃(�⃗�)𝜙(�⃗�′)𝛻′ 1

|�⃗�′−�⃗�|
∙   𝑑𝑆′                        (3) 

In this equation, we consider the calculation of the potential 𝜙 (�⃗�) caused by a current source 

with constant and isotropic conductivity, and within an area bounded by surface S. Here, 𝜙∞(�⃗�) 

is the potential generated in a medium of infinite extension and Ω(𝑆; �⃗�) is the solid angle of surface 

S, as seen from point �⃗�. If �⃗� is positioned on S, the solid angle equals 2𝜋. We denote as S\∃(�⃗�) to 

indicate that the integral is assumed on surface S with which an environment of �⃗� is excluded. 

Then, it is assumed the limit to Ê(�⃗�)→{�⃗�}.  

Solution of Eq. (3) can be approximated by choosing a set of functions {ℎ𝑛(�⃗�𝑚)}N
n=1 and a set of 

discretized points {�⃗�m}N
n =1 so that:  
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ℎ𝑛(�⃗�𝑚) = 𝛿𝑛𝑚                                               (4) 

where 𝛿𝑛𝑚represents a Delta function as the result of evaluating ℎ𝑛(�⃗� )in the discretized point 

�⃗�𝑚. The unknown potential field 𝜙(�⃗�) is expanded in terms of ℎ𝑛(�⃗� ), this is,  

𝜙(�⃗�) = ∑𝑁
𝑛=1 𝜙𝑛ℎ𝑛(�⃗�)                                        (5) 

where 𝜙𝑛 are the coefficients of said expansion. With the above definitions, Eq. (1) can be 

approximated to a set of linear equations with N different values of 

∑𝑁
𝑛=1 𝐵𝑚𝑛𝜙𝑛 = 2𝜙∞(�⃗�𝑚)                                    (6) 

where the matrix elements are calculated by  

𝐵𝑚𝑛 =
1

2𝜋
(∯

𝑆\∃(�⃗�𝑚)ℎ𝑛(�⃗�′)𝛻′ 1

|�⃗�′−�⃗�𝑚|
∙   𝑑𝑆′  +  𝛿𝑛𝑚Ω(𝑆; �⃗�𝑚) )      (7) 

The simplest choice for the functions is obtained from the triangulation of S and by making ℎ𝑛(�⃗�) 

equal to 1 at the nth triangle and zero at other triangles. The discretized points �⃗�𝑚 are given by the 

centers of the triangles. In this approach, the potential is described as a constant function defined 

by parts, therefore, many triangles are necessary to accurately represent the potential. In the case 

where the approximation is made by linear interpolation of the potential, surface S is also 

subdivided into small triangles, but unlike the approximation by a constant potential, the 

discretization points are given by the vertices of the mesh. The interpolation functions in this 

approximation are given by: 

ℎ𝑛(�⃗�) =
𝑑𝑒𝑡 (�⃗�𝑘,�⃗�𝑙,�⃗�)

𝑑𝑒𝑡 (�⃗�𝑘,�⃗�𝑙,�⃗�𝑛)
, 𝑖𝑓  �⃗�  ∈  ∆𝑘𝑙𝑛, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 ℎ𝑛(�⃗�) = 0                (8) 

where �⃗�𝑘, �⃗�𝑙 , �⃗�𝑛are the vertices of triangle ∆𝑘𝑙𝑛, and ℎ𝑛(�⃗�) is a linear function defined by parts of  

�⃗�  and satisfying the condition in Eq. (2). To calculate the matrix elements, the integration area is 

partitioned into triangles adjacent to �⃗� . In each triangle, a normal �⃗⃗� is independent of �⃗� . 

Moreover, the diagonal elements are given separately, in such a way that we can assume 𝑛 ≠ 𝑚. 

Then, it can be readily shown that 

𝐵𝑚𝑛 =
−1

2𝜋
(∑∆𝑘𝑙𝑛

𝑑𝑒𝑡𝑑𝑒𝑡 (�⃗�𝑘−�⃗�𝑚, �⃗�𝑙−�⃗�𝑚,�⃗�𝑛−�⃗�𝑚) 

𝐴𝑘𝑙𝑛
∙ ∬

∆𝑘𝑙𝑛

ℎ𝑛(�⃗�′)

|�⃗�′−�⃗�𝑚|3
 𝑑𝑆′              (9) 

where the sum is on all adjacent triangles to �⃗�𝑛and where Akln is the area of triangle ∆𝑘𝑙𝑛. To find 

the diagonal elements, and knowing that ∑𝑛 ℎ𝑛(�⃗� ′)=1, the vector (1, 1, …, 1) is the eigenvector 

with B, corresponding to eigenvalue zero, as follows:  

∑𝑁
𝑛=1 𝐵𝑚𝑛 =

1

2𝜋
(∯

𝑆\∃(�⃗�𝑚)𝛻′ 1

|�⃗�′−�⃗�𝑚|
∙   𝑑𝑆′ + Ω(�⃗�𝑚)) = 0                         (10) 

Through this property of B, we have that its diagonal elements can be expressed in terms of the 

other remaining matrix elements, such that:  
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𝐵𝑚𝑚 = − ∑𝑁
𝑛≠𝑚 𝐵𝑚𝑛                                                     (11) 

Therefore, for the calculation of the linear relation matrix (ATC) that relates the geometries of the 

torso and the atria, it is necessary to triangulate the surfaces to generate meshes defined by vertices 

and faces, where each vertex is a point of discretization. This triangulation is often derived from 

segmentation of medical images of the torso. 

Non-proprietary algorithms  

From the studies that used non-proprietary algorithms for inverse solution, mostly applied the 

zeroth-order Tikhonov regularization method (n=13; 40%). Bayes maximum-a-posteriori 

regularization method outperformed the most common regularization techniques but this technique 

requires prior information about the epicardial potentials, which usually is not available in the 

majority of cases in clinics. Tikhonov-based methods performed as well as more complex 

techniques in realistic fibrillatory conditions. 

Tikhonov regularization method 

The Tikhonov regularized solution is obtained by minimizing an appropriate objective function 

(Pullan et al., 2011) 

                         𝜙𝐶  =  𝑚𝑖𝑛 [∥ 𝐴𝑇𝐶  −   𝜙𝑇||
2

2 + 𝜆  ∥ 𝑅𝜙𝐶 ∥2
2 ]                                 (13)              

where R is the N × N Tikhonov matrix and ∥ ⋅ ∥𝑝 is the p-norm. Matrix R helps to restrict (hence 

to regularize) the inverse solution. The first term ∥  𝐴𝑇𝐶  −   𝜙𝑇 ||2
2
  represents the L2 squared 

error, while the second term restricts, in the spatial domain, the energy of the solution according 

to the choice of the particular Tikhonov matrix R. Here λ is called the regularization parameter, 

and it determines to what extent the final inverse solution will depend on R. A higher λ leads to a 

smoother solution (i.e. reduces more noise), but it can remove localised activation patterns (an 

over-smoothed solution) (MacLeod and Buist, 2010). There are three Tikhonov matrices (Pullan 

et al., 2011) that are commonly used in inverse electrocardiography. Zero-order Tikhonov 

regularization sets R = I, the identity matrix, which effectively limits the total magnitude of the 

solution. First-order Tikhonov regularization sets R = G, a discrete approximation of the surface 

gradient operator that limits the slope of the solution. Finally, Second-order sets R = L, a discrete 

approximation of the Laplacian surface operator, to restrict the rate of change in the slope. The use 

of zero-order Tikhonov method, even with a constant regularization parameter, is justified by the 

fact that it is a good alternative to solve the inverse problem of electrocardiography during AF. 

Comparisons made between different regularization methods used to calculate atrial potentials 

during AF suggest that the zero-order Tikhonov regularization method might be insensitive to 

moderate changes in regularization parameters. In addition, results for different values of signal-

to-noise ratio (SNR) showed that no algorithm was significantly more robust regarding to changes 

in noise level (Figuera et al., 2016).         

With Tikhonov regularization, we can write a closed solution for Eq. (13) as                                                    

𝜙𝐶 =  ( 𝐴𝑇𝐶
𝑇 𝐴𝑇𝐶  +  𝜆 𝑅𝑇𝑅)−1 𝐴𝑇𝐶

𝑇𝜙𝑇                                     (14) 
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Hence, in the unregulated case (λ=0), the Moore-Penrose pseudoinverse is obtained. Replacing 

Eq. (14) in Eq. (3), the solution for zero-order Tikhonov regularization (Pullan et al., 2011) is 

𝜙𝐶 =  ( 𝐴𝑇𝐶
𝑇 𝐴𝑇𝐶  +  𝜆 𝐼)−1 𝐴𝑇𝐶

𝑇  𝜙𝑇                                        (15)  

with 𝐴𝑇𝐶
𝑇
 denoting the transpose matrix of 𝐴𝑇𝐶 .  

Other regularization methods 

Other regularization methods that have been implemented for smoothing the inverse solution 

include Generalized Minimal Residual (GMRes), singular value decomposition (SVD), total 

variation (TV), Bayesian Maximum a Posteriori Estimation (Bayes) and MUltiple SIgnal 

Classification (MUSIC/Greensite) algorithms (Figuera et al., 2016; Ghosh and Rudy, 2009; 

Pereyra, 2017; Onal and Serinagaoglu, 2009; Ramanathan et al., 2003).  

The GMRes method is an iterative numerical method that does not require to impose constraints 

on the solution (Ramanathan et al., 2003, Calvetti et al., 2000). In this method, the inverse of matrix 

 𝐴𝑇𝐶  is approximated by its projection 𝑝𝑛(𝐴𝑇𝐶)  onto a Krylov subspace K(n), which comprises 

the set of all linear combinations of the vectors in  𝜙𝑇(Ramanathan et al., 2003). The GMRes 

method requires  𝐴𝑇𝐶 to be square and 𝜙𝑇 to be normalised (Calvetti et al., 2000). As such, the 

solution to be minimised becomes (cfr. Eq. 13) 

||𝐴𝑇𝐶  𝜙𝑇 − 𝜙𝐶|| = 𝑚𝑖𝑛 ||𝐻𝑚𝜙�̂� − 𝜙�̂�𝑒1||                                        (16)  

With 𝐻𝑚denoting an upper Hessenberg matrix, 𝑒1the first axis vector of an Arnoldi decomposition 

of 𝐴𝑇𝐶and �̂�the approximate solutions to the torso and cardiac potentials. 

The most popular SVD algorithms are truncated (TSVD) and damped (DSVD) SVD. In TSVD, 

the matrix 𝐴𝑇𝐶is truncated such that all its singular value components that represent noise are 

removed. As components representing noise usually have small singular values, the truncation is 

implemented by maintaining a set of k components with the highest singular values (Hansen, 

2010). The value of k needs to be set a priori to obtain a solution, and the function to be minimised 

reads: 

                         𝜙𝐶  =  𝑚𝑖𝑛 [∥ 𝐴𝑇𝐶,𝑘  −   𝜙𝑇||
2

]                                         (17)  

DSVD is a less ‘brute force’ application compared to TSVD, as it allows a filtering of singular 

value components rather than forcing to make an inclusion/exclusion decision on the components 

to include in the final solution (Figuera et al., 2016). 

TV applies an 𝐿1-norm penalization on the inverse solution, rather than an 𝐿2-norm in Tikhonov 

regularization. The function to minimise therefore becomes (Figuera et al., 2016): 

                         𝜙𝐶  =  𝑚𝑖𝑛 [∥ 𝐴𝑇𝐶  −   𝜙𝑇||
2

+ 𝜆  ∥ 𝑅𝜙𝐶 ∥ 1 ]                                 (18)   
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The Bayesian approach is based on a priori knowledge of the spatial covariance matrix and mean 

of the epicardial potentials. Setting this mean to zero gives (Figuera et al., 2016): 

                         𝜙𝐶  =  (𝐶𝑐𝐴𝑇𝐶
𝑇)(𝐴𝑇𝐶𝐶𝑐𝐴𝑇𝐶

𝑇 + 𝐶𝑛)−1𝜙𝑇                                 (19)   

With 𝐶𝑐 and 𝐶𝑛 the covariance matrices of the epicardial potentials and noise. This approach only 

accounts for spatial correlation of the potentials. A temporal correlation can be included based on 

the isotropy assumption described by Greensite (2003). Here, the covariance matrix 𝐶𝑐 is extended 

to 𝐶𝑐 = 𝐶𝑡 ⊗ 𝐶𝑥, with 𝐶𝑡the temporal covariance matrix and 𝐶𝑥 the spatial covariance matrix 

(Figuera et al., 2016). 
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