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APPENDIX A: PROOF OF THE THEOREMS
Before proving the two theorems, we first define the function ¢(z) as in Bianco and Yohai| (1996) and
Crous and Haesbroeck| (2003).

DEFINITION Al. Let F(x) = 1/(1 + exp(—x = [y p/(=In(t))dt for 0 < x < 1, and
({lf) _ xexp(—\/E), xr <,
PRET= —2 exp(—+v/x)(1 + /x) + exp(—/x)(2(1 + v/c) + ¢), otherwise.

If we let ¢ = 0.5, then the function ¢(x) is defined on x € R and can be expressed as
¢(x) = p(=In(l = F(x))) + U(F(z)) + Ul = F(z)) = U(1).

A.1  Proof of Theorem 1
We follow the similar idea as in the proof of He et al.{(2016). Let g = (g1, ..., gp)T with g; > 0 for all
j =1,...,p. Then by the Cauchy-Schwartz inequality,

M
Q2(H.g.8) = ZZdazmﬂk,ym +Zgj+—zg <Z|ﬁkj|>,
k=1

k=1i€Hy
1/2
S il B+ Y (Azzm]) ,
k=11i€H Jj=
where the equality holds if and only if g; = )\é/ Q(Zkle |ﬁkj|)1/ 2. Consequently, if By =
(,81 Ho B\JQH)T is a solution for the minimization of (2.2), then by letting \ = )\5/ % and gj =

)\;/Q(Zkzl |Bkj])1/2, (By,gl, ..., 0p) is also a solution for the minimization of Q2(H, 7). This
indicates that the minimization problem of Q2(#, g, 3) is equivalent to that for Q(#, 3).

Let also aj = g, Vkj = g;lﬂkj for g; # 0 and ~;; = 0 for g; = 0. We have

M
Qa(H, ) = Z > d(@iBr. yki) + Z |aj| + —Z (Z |’7kj|>
—1 \k=1

k=11i€Hy
= Ql(H7a77>'

This shows that the minimization problems for the objective functions (2.2) and (2.4) are equivalent to

each other.
A.2 Proof of Theorem 2
By the construction of the approximate clean subset, we have

Q(Hit1, Bry) < Q(H, Bra,)-
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Noting also that Q(H1, BH ++1) is the minimum value with respect to 3, we further have

Q(Ht—l—laB\HtH) < Q(Hit1,Bu,).

This leads to Q(H¢+1, BHtH) < Q(Hy, //B\Hf)

APPENDIX B: ADDITIONAL SIMULATION RESULTS
B.1 The plots of coefficient estimates for L-each and RL-each

Figures show the average values of the estimates for each coefficient with the confidence intervals
(mean £3x standard error) for M = 2 studies. The parameter estimation is based on L-each and RL-each
with clean and contamination data, respectively.

B.2 A comparison for time consumption

Table [ST] summarizes the computational time of our RL-meta and the other three methods adopted in
Section 3. The time (in seconds) for one simulation is reported using the R software with Intel Core (TM)
3.20GH processor. We note that RL-meta and RL-each have a larger computational burden than L-meta
and L-each. This may due to that the two robust methods need a C'-step to search for an outlier-free subset
iteratively with different initial subsets.

Table S1. The time consumption (in seconds) of RL-meta, L-meta, RL-each and L-each with (M, n, p, w) = (2, 150, 1000, 0.5), respectively.

RL-meta | RL-each | L-meta | L-each
Run Time | 674.06 447 1.64 1.19
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Figure S1. The coefficient estimates with clean data for M/ = 2 and (n, p) = (100, 50). The blue points
and lines represent the estimated values and the interval estimates of coefficients over 100 simulations.
Rows from top to bottom correspond to my = 0.2, 0.5, 0.9, respectively.
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Figure S2. The coefficient estimates with clean data for M/ = 2 and (n, p) = (150, 1000). The blue points
and lines represent the estimated values and the interval estimates of coefficients over 100 simulations.
Rows from top to bottom correspond to 7 = 0.2, 0.5, 0.9, respectively.
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Figure S3. The coefficient estimates with contamination data for M = 2 and (n, p) = (100, 50). The
blue points and lines represent the estimated values and the interval estimates of coefficients over 100
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simulations. Rows from top to bottom correspond to mg = 0.2, 0.5, 0.9, respectively.
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Figure S4. The coefficient estimates with contamination data for M = 2 and (n, p) = (150, 1000). The
blue points and lines represent the estimated values and the interval estimates of coefficients over 100
simulations. Rows from top to bottom correspond to m = 0.2, 0.5, 0.9, respectively.
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