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Al. UNIFORM RANDOM LINES IN 2D AND 3D AND THEIR INTERSECTIONS WITH SQUARES AND CUBES

Line L =

FIGURE A1 | Uniform random line intersections in (A) a square and in (B) a cube.

Al.1. UNIFORM RANDOM LINE INTERSECTIONS OF A

SQUARE IN 2D

A uniform random line in 2D space is a line with a uniform
random orientation drawn from a random point in the 2D
space. A uniform random orientation is obtained by taking a
uniform random angle with respect to the X-axis in the
interval [-90,90] degrees via

@r = —90 + 180 X rand (A1)

with rand indicating a uniform random number in [0,1). The
selection of a uniform random point in 2D space through
which the line is drawn can be simplified by taking a
uniform random point on a 1D infinite line perpendicular to
the random orientation ('look-up line"). When it concerns the
selection of a random line through a square, the infinite
'look-up' line can be reduced to a finite 'look-up' line piece
(L) of such a size that it covers the full square, as seen from
any orientation of the random line (Fig. A1A). Then it
suffices to select a uniform random point (4) on this finite
"look-up' line piece through which the random line is drawn.
It is crucial that the 'look-up' line pieces are of the same size
for any orientation of the random line, to guarantee that the
square is seen by line beams with the same line density for
any orientation. For a square of size s, the 'loop-up' line
should have a length of at least sv2 (the length of the
diagonal in the square). Lines with the given random
orientation and drawn from random points on the 'look-up'
line piece may or may not hit the square, depending on the
orientation of the square with respect to the line. The
probability of hitting the square is proportional to the length
of the projection of the square onto the 'loop-up' line piece.
This fact guarantees that the square is probed with constant
density line beams for any orientation of the beam.

The intersection of a random line with a square is indicated
by the points P and Q in Fig. A1A. The length distributions
of these intersections are displayed in the graphs of Fig. A2.
The mean (sd) intersection length is equal to
PQsquare = 0.7856 X 5 (0.3555 X 5) . (A2)

The intersection length distribution for a square (Fig. A2A)
has a complex shape, and is composed of two components. It
has one component for the intersections of opposite sides
which have a length range of [s,sv2] (Fig. A2B) and one
component for the intersections of two neighboring sides
which have a length range of [0,sV2] (Fig. A2C). A
particular property of the angle distribution of the
intersecting line pieces is that it is not uniform but has
maxima at angles of -45 and 45 degrees (Fig. A2D). This is
caused by the fact that lines with these orientations see the
square from a diagonal point of view, such that the square
captures most of the random lines (a square is not a circular
object). A typical set of intersections of uniform random
lines with a square is shown in Fig. A2E.

Al1.2. UNIFORM RANDOM LINE INTERSECTIONS OF A
CUBE IN 3D

The generation of uniform random lines in 3D follows the
same principle as in 2D. A random line in 3D space is a line
with a uniform random orientation drawn from a random
point in 3D space. A uniform random orientation is obtained
by taking a uniform random azimuth angle with respect to
the X-axis in the interval [-90,90] degrees via Eq. (Al) and a
sine-weighted random elevation angle 0 via

O = arcsin(2 X rand — 1) . (A3)
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FIGURE A2 | Intersections of uniform random lines with a square of size s;=1 pm. Shown are (A) the length distribution of the line
intersections, (B) the length distribution of line intersections of opposite sides of the square, (C) the length distribution of line
intersections of neighboring sides of the square, (D) the angle distribution of the intersections, as well as (E) a typical set of random

The selection of a uniform random point in 3D space
through which the line is drawn can be simplified by taking a
uniform random point in a 2D infinite plane perpendicular to
the random orientation ('look-up plane'). When it concerns
the selection of a random line through a cube, the infinite
"look-up' plane can be reduced to a finite 'look-up' plane (V)
of such a size that it covers the full cube, as seen from any
orientation of the random line (Fig. A1B). Then it suffices to
select a uniform random point (4) on this finite 'look-up'
plane through which the random line is drawn. It is crucial
that 'look-up' planes of the same size are taken for any
orientation of the random line, to guarantee that the cube is
seen by line beams with the same line density for any
orientation. A cube of size s is, for any angle, fully covered
by a square of size sv3, the length of the diagonal in the
cube. Lines with the given random orientation and drawn
from random points on the 'look-up' square may or may not
hit the cube. The number of hits depends on the orientation
of the cube with respect to the line, because the number of
hits is proportional to the projection area of the cube onto the
'look-up' plane. This fact guarantees that the cube is probed
with constant density line beams for any orientation of the
lines.
The intersection of a uniform random line with a cube (in the
following denoted by a random line piece in a cube) is
indicated by the intersecting points P and Q in Fig. A1B. The
length distribution of the intersections of the cube by
uniform random lines (Fig. A3A) has a mean (sd) of
PQype = 0.66653 x 5 (0.39156 X s5) . (A4)
This distribution has also a complex shape with two
components, one of lines intersecting opposite cube side
planes (Fig. A3B), and one of random lines intersecting
neighboring cube side planes (Fig. A3C). Intersections

between neighboring side planes can be as short as zero, and
as long as the cube diagonal, thus with range [0,sv3].
Intersections of opposite side planes cannot be shorter than
the size s of the cube, but can also be as long as the cube
diagonal, thus with range [s,sv3]. The azimuth angle
distribution of the intersecting line pieces (Fig. A3E) does
not show a uniform random pattern, but two peaks at the
angles of -45 and of 45 degrees. A similar argument to that
in the 2D case can be applied here, in that uniform random
lines with these orientations see the cube with the largest
area and thus with the highest hit probability. The elevation
angle distribution (Fig. A3F) deviates from the sine pattern
(expected for uniform random line pieces) by having two
maxima. They are located at smaller angles than the
elevation angles of +35.3 and - 35.3 degrees of the
diagonals; this is probably a convolution effect of the
original sine shape with the orientation-dependent
intersection pattern. A typical set of intersections of uniform
random lines wth a cube is shown in Fig. A3G.

A.1.3. OTHER PROCEDURES FOR GENERATING
RANDOM (BUT BIASED) LINE INTERSECTIONS WITHIN
A SQUARE OR CUBE
Three other procedures were initially explored but with
biased results. The first one was to select at random two
planes of a cube, and then select a random point on each
plane. The connection is then a random line. However, the
angle distribution of these lines is biased because line pieces
connecting two points in neighboring planes have an angle
distribution influenced by the orthogonal orientation of the
side planes in the cube.

The second procedure was to select two uniform random
points in the cube and then to draw a line between both
points. These line pieces, however, have also a biased angle
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FIGURE A3 | Intersections of uniform random lines with a cube of size s,=1 pm. Shown are the (A) length distribution of random line

intersections, (B) length distribution of random lines intersecting opposite side planes of the cube, (C) length distribution of random

lines intersecting neighboring side planes of the cube, (D) length distribution of the projection of random line intersections on an

arbitrary side plane of the cube, (E) azimuth angle distribution of random line intersections, (F) Elevation angle distribution of random

line intersections, as well as (G) 100 intersections of uniform random lines with a cube.

distribution beause in corner areas of the cube the majority
of the line pieces originate from points from the main
volume of the cube and hence have a clear orientation bias.

The third procedure was to select a uniform random
point in the cube and then to draw a line with a uniform
random orientation through that point. This procedure results
in uniform random azimuth angle distributions and cosine
shaped elevation angle distributions. However, these line
pieces do also not agree with the characteristics of uniform
random lines in space. When applied to the internal sphere of
the cube, such a procedure would indeed produce uniform
random line intersections. However, when random points are
selected in the corner areas of the cube outside the internal
sphere, random orientations may result in intersections that
do or do not hit the internal sphere. The intersections that
also hit the sphere would result in an orientation bias in the
intersecting line densities.

A2. DENSITY FIELDS

In a discretized space with voxel size s, and filled with
uniform random lines, each voxel may be hit by these lines
resulting in an intersection of a certain length. When a given
voxel is hit by multiple lines the total length of its
intersections then correlates with the number of hits. The
mean length of the intersections in the given voxel is equal
to 0.66653 X s, (Eq. A4), and in a statistical sense the

expected total length of the intersections Lt can be related
to the expected number of hits E{n"*} as
LIt = 0.66653 x s, X E{nlit} = C x s, X E{nt}  (A5)
with € = 0.66653. When the expected number of hits is
much smaller than one, we may replace the expectation of
the number of intersections by the intersection (hit)
probability pt itself (note that under this condition the
probability of more than one intersection becomes negligibly
small):

Pyt = LYT/(C xsp) . (A6)
These expressions are also applicable when the local density
of random lines is not uniform. In that case the hit
probability p** may differ from voxel to voxel.
A2.1. VOXEL HIT PROBABILITIES AND FIELD DENSITIES
The density field of an arborization reflects the distribution
of its 'mass' over the unit grid in 3D space, and the local
density p,, in each unit voxel denotes the expected amount of
'mass' m,, in that voxel. If mass is expressed in the length of
the branches of the arborization, then the density in each unit
voxel denotes the expected length LE%" of the branches in that
unit voxel. A voxel of size s, then contains a total branch
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length Li°t equal to the local density times the volume of the
voxel
Lt =p, x s3 . (A7)
Conversely, a given total length of branches (line pieces)
Lt in a voxel of size s, represents a density of
py = LY/s5 . (A8)
Combining Egs. (AS) and (A7) yields the expected number
of intersections of the voxel by the line field:
E{nj"} = Ly*/C x5, = p, X s}/C. (A9)
If this expectation is much smaller than one, we obtain the

probability for a voxel to be hit by a branch of the
arborization as expressed in terms of the densities:

h

phit = p xs2/C. (A10)

A3. CROSSING OF RANDOM LINES

In a recent study, we developed an algorithm for finding
synaptic locations in an area innervated by both axonal and
dendritic arbors (Van Pelt et al., 2010). The algorithm is
based on finding pairs of axonal and dendritic line pieces
that cross with a crossing distance smaller than or equal to a
given criterion distance 6. In this Appendix, we study the
crossing properties of random line pieces in the same or in
different voxels.

A3.1. CROSSING OF RANDOM LINE INTERSECTIONS
WITHIN A SINGLE CUBE

The crossing probability of two random line pieces in a cube
is obtained by generating a large number of pairs of random
line pieces (n=1000000) according to the procedure
described in section Al.2. and by determining for each pair
whether they are crossing (Fig. A4A). The -crossing
probability is equal to the ratio of the number of crossing
line piece pairs and the total number of line piece pairs. In

the case of crossing line pieces, the length of the orthogonal
connection (crossing distance) is determined according to the
algorithm described in Van Pelt et al. (2010). The frequency
distribution of crossing distances within a single cube of size
s=1 (Fig. AS5) has a mean of 0.334 and a standard deviation
0f 0.256. The crossing distances scale linearly with the size s
of the cube, in such a way that mean d5;2%°(s) and standard
deviation d$}°*°(s) of the crossing distance distribution
become

da*s(s) = 0.334 X s and d$}°*°(s) =0.256 X 5.
(A1)

The crossing probability of two random line pieces in a cube
was found to be equal to

po% =0.3133, (A12)
which is independent of the size of the cube. Note that for

the geometry of (crossing) line pieces in a cube the size of
the cube is not relevant.

Cube size s=1 um n=1000000

- ncross=313271
pcross=0.31327
mn=0.33393
sd=0.25642
min=0.
max=1.60267

Frequency (x1000)
3

0 T f T
0 1 2
Crossing distance (um)

FIGURE A5 | Frequency distribution of the crossing distances
between two crossing random line pieces within a voxel of
size s=1.
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A3.2. CROSSING OF RANDOM LINE PIECES IN
DIFFERENT CUBES

In a similar manner we can obtain the probability that
random line pieces in two different cubes cross (Fig. A4C).
The procedure was first to get two cubes v and w of size s
with their corners at (x,, ¥, z,) and (X, Y, Zw)
respectively. The distance d,,,, between the cubes is given
by

dv,w = \/(xv - xw)z + (yv - YW)Z + (Zv - Zw)z . (A13)
Second, a random line piece was obtained in both cubes, and
third it was determined whether the two line pieces were
crossing. The crossing distance was obtained according to
the algorithm described in Van Pelt et al. (2010). The
crossing probabilities, shown in Fig. A6A, are obtained for
unit cubes (i.e. with size s=1 pm). The crossing probabilities
appear to decrease strongly with the distance between the
cubes. The figure contains three curves, calculated for
stepwise shifts of 0.2 um of the cubes in the x-direction (red
curve), the xy-diagonal direction (dark blue curve) and the
xyz-diagonal direction (light blue curve). The precise
overlap between the curves indicates that the crossing
probability of random lines pieces in a cube pair is
dependent on their Euclidean distance but independent of the
orientation of both cubes with respect to each other.

A block of unit voxels of size s;, contains s; unit voxels, and
hence a similar number of ways exists to pair the central
voxel with any of the voxels in the block. For each voxel
pair the crossing probability of random line pieces in the
central voxel with one voxel in the block was calculated.
Fig. A6B displays these crossing probabilities for a block of
size s, = 13 um (with in total 13% = 2197 voxel pairs).
The maximal distance between the central voxel and a corner
voxel in the block was dpq. = 6vV3 = 10.39 um . For
overlapping voxels (d,,,, = 0) we had already (Eq. A6)

peToss(d,,, = 0) = 0.3133 .

For non-overlapping voxels v and w (d,,, = 1) the data
points were fitted with a power law function

logo % (dyyy = 1) =a+b X (x — )¢ (A14)

with best-fitting parameters a=32.75; b=-34.10; ¢=0.1966;
and d=0.02383. Using the approximation a® = 1 + ¢ X lna,
we replaced the factor

(x—c)=1+dxIn(x—c) (A15)

resulting in

logyo P (dyyy = 1) =
= —1.350 - 0.8126 x In(d,,,, — 0.1966)
and
pcross(dv‘w > 1) =~
= 0.04467 X (d,\ — 0.1966)_1'8264 . (A16)
A4. CONDITIONAL CROSSING PROBABILITY
A4.1. CONDITIONAL CROSSING PROBABILITY OF
RANDOM LINE PIECES IN A SINGLE CUBE OF
ARBITRARY SIZE

Two random line pieces in a cube of size s. will cross each
other with a probability of (Eq. A12)

poss =0.3133
and a mean crossing distance of (Eq. A11)

dcross = 0.334 X s, .
For the conditional crossing probability p<?%%(s.|6)
between random line pieces in a single cube, a constraint of

6 um is set on the maximal crossing distance between
crossing line pieces.
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Thus only those pairs of crossing line pieces are selected that
have a crossing distance that does not exceed the constraint
of 6 um. This condition makes the conditional crossing
probability dependent on the size s, of the cube, as is shown
graphically in Fig. A7. These outcomes are obtained by
calculating crossing probabilities for a range of cube sizes of
[1,13], for a range of criterion values & of [1,13], and for the
unconditional case (i.e., 6 = o). Each outcome is the mean
value for a large number of random line piece pairs
(n=1.000.000). Fig. A7 shows that the unconditional
crossing probabilities (§ = oo) are independent of the size of
the cube, as was already stated at Eq. (A12). The conditional
crossing probabilities (finite §), however, depend strongly on
the cube size s.. For instance, for § = 1 um, crossing line
pieces are accepted only when their crossing distance is
smaller than 1 gm. This strong requirement has the largest
effect in large cubes, when on average the crossing distances
vary over larger ranges (lowest curve in FigA7A).

A4.2. CONDITIONAL CROSSING PROBABILITY OF
RANDOM LINE PIECES IN VOXELS AT A GIVEN
DISTANCE
When a distance criterion 6 is applied to the crossing
probability of random line pieces in two different voxels v
and w, the conditional crossing probability p">**(s., d,, ,|6)
also becomes dependent on the distance d,,,, between the
two voxels (Fig. A8). These outcomes were obtained by
taking random line pieces in all the s.* unit voxels in a cube
of size s. and testing their crossing with random line pieces
in the central voxel of the cube. Note that the size of the unit
voxels is equal to 1 um. Evidently, the conditional crossing
probability for a voxel pair v,w at larger intervoxel distance
d,,,, than the criterion distance & is zero,
PO (e, dyyy >> 8[8) = 0. (A17)
Likewise, the conditional crossing probability of a voxel pair
at smaller intervoxel distance than the criterion distance is

equal to the unconditional crossing probability for that
distance,

pcross(sc' dyw K 8|8) =po%(dyw) - (A18)
For this distance regime the curves in Fig. A8 are identical to
the one in Fig. A6B. Voxel pairs at intervoxel distances
around the criterion distance have lower conditional crossing
probabilities,

PO (s, dypy = 8[8) < PTOE(dy) . (AL9)

For instance, for 6 =1um only the voxels directly
surrounding the central voxel contribute: there are 6 voxels
at a distance of 1 um, 12 voxels at a distance of V2 um, and
8 voxels at a distance of v/3 um. Fig. A8 shows that for a
given distance criterion 6, voxels at a maximal distance of
6+ 1 from the central voxel have a nonzero crossing
probability. The sum of the crossing probabilities over all
these voxel pairs in the block denotes the total expected
number of crossings between random line pieces in the
central voxel and in all the voxels in the local environment
of the central voxel, as determined by the distance criterion
8. The continuous line in each panel indicates the cumulative
sum with increasing voxel distance.

A5. OVERLAPPING DENSITY FIELDS

AS5.1. EXPECTED NUMBER OF CROSSING LINE PIECES
IN AN OVERLAP AREA OF TWO DENSITY FIELDS
Suppose we have two density fields D and 4 with densities
pp and p,, respectively, with an area in space where they
overlap. In this overlap area each voxel of size s will contain
amass p,p X s from field D and a mass p,, X s from field
A. As discussed above, these masses can be related to the
probabilities p¥ and plif that the voxel is intersected by
lines of field D and field A4, respectively.

Frontiers in Computational Neuroscience

www.frontiersin.org

November 2013 | Volume 7 | Article 160 |




van Pelt and van Ooyen

Connectivity estimation from density fields

.é" 1 E| 1 E 1 3

% 0+ o —— Logl0-sum=0.157 0 B/ﬁ Soileu e 01 Co/f— i

=] 3 sum=0.697 E 3

o -173 é -1 °, -11 °,

529 e 2 T, Y

z 31 ° -39 ’ 34 %,

wy 3 3 3 (]

9 74 = *4 g 4 1

o 3 E 3

v -5+ -5 -5 !’

E 3 E 3

2 61 5=1um 61 5=2 um 671 5=3 um =

- -T T T T T T T T T T -7 T T T T T T T T T -7 T T T T T T T T T

01 2 3 45 6 7 8 01 2 3 45 6 7 8 01 2 3 45 6 7 8

.é‘ 1 E 17 1 E

B 0 15 p’//_/__chlD—sum:O.MS 0!: Ec,/’_/-ﬁmg‘10'5“’":D 543 015 F//_,”,L[’gqmﬂ 622

E E sum=2.793 g sum=3 492 E sum=4 188

9 -1 '! o - -1 '5 o o -1 '! -] -

> 21 " 21 "oe0 24 g

G 1 3\ 31 Y, 33

S -4 4 44 -4 4

] E 3 E

v -5 -5+ \G -5

o E 3 E

2 01524 um °° 61 5=5 um o 61 526 um -

= -7 T T T T T T T T T -7 T T T T T T T T T -7 T T T T T T T T T

01 2 3 45 6 7 8 01 2 3 45 6 7 8 01 2 3 45 6 7 8
Voxel distance (um) Voxel distance (um) Voxel distance (um)

FIGURE A8 | Conditional crossing probabilities of random line pieces from a central voxel and one of the voxels in a block. Each
data point indicates the crossing probability for one voxel pair, plotted versus the distance between both voxels. The total number of
data points in a panel denotes the total number of voxel pairs with a positive crossing probability, i.e., of voxels sufficiently close to
the central voxel, allowing crossing distances of line piece pairs within the distance criterion 6. Note that data points in the Figure
may overlap. The sum of these crossing probabilities over all the voxels in the block denotes the total expected number of crossings
between random line pieces in the central voxel and in all the voxels in the block. Each panel is labeled with the distance criterion
value 6. The continuous line indicates the cumulative sum.

For any combination of line intersections of field D and field
A, we now want to estimate the number of crossings line
pieces over the given area in space. For a voxel pair v and w
with an intervoxel distance d,,, the conditional weighted
probability that a random line piece from field D in voxel v
and a random line piece from field 4 in voxel w cross is
given by

PShosS (s, dyw|8) X ph x phit = (A20)

2 2
= pcross PvDXS” o PwAXS” _
= p&oss(s, dy|8) % X =

4
= plcjj;\c/zss(s’ dv,w|8) X Ppyp X Pywa X (S:_z .

The conditional weighted expected number of crossing line
pieces of both fields in the overlap area can now be obtained
by calculating the conditional weighted expected number of
crossing line pieces that meet the distance criterion in all the
voxel pairs in the overlap area:

E{ng 3|8} = (A21)

__xspace xspace

4
cross st
v w Pow (S' dv,w|8) X Pyp X Pwa X C_Z -

st space space
= c? X Zv Pvp X Zw Pwa X pgmss (S, dv,w|6)~

The summation in this expression runs over all voxel pairs in
the given space. However, for each voxel of the field D,
voxels of field 4 contribute positively to the summation only
if the pairs of random line pieces do not cross beyond the
criterion distance 8 (Egs. A17-A19). Thus the second
summation over voxels w can be restricted to the local
environment v,,, of voxel v, resulting in the basic expression

E{ng 3|8} = (A22)

s* space v,
= c? X Zv Pvp X Zwenv Pwa X pgngss (S' dv,wls)-

The local environment of wvoxel v with coordinates
(iy, ju, k) can be defined as the set of all voxels w whose
coordinates (i, j, k,,) meet the conditions

iy—6<i,<i,+6,
jv_(SSijjv‘l'(Sa
ky—8 <k, <k,+5.

(A23)

A5.1.1. Overlap of individual neuron density fields
Equation (A22) can also be rewritten as the mean of the
expected number of contacts in pairs of individual neurons.
The densities p,,, and p,p were obtained as the average over
a population of soma-centered and aligned neurons:

_ 1 ynp _ 1 yna
Pvp = n—Zl Pvp; and py4 = _Zj Pwa; -
D ng J
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Insertion in Eq. (A22) gives

s* space 1 n
E{ngg18) = 5 x 57 L x 7P pyp, X

v, 1 on
X ZWEWEZJ'A pr]- X pgmss(sﬂ dv,w|8)
and after exchange of summations
4
cross _S 1 1 np yna
E{nD‘A |8}—§XEXEXZL- Z]

space v,
v Pvp; X 2w Pwa; X Dy (S, dy,w|6)

The last two summations result in the density overlap of the
dendritic and axonal field of two individual neurons:

54-

E{ng5|5} = X Xi"Xj" overlap(D;, 4))

(A24)

CZxnpxng
with

overlap(D;, 4;) =

= Zpace Pyp; X vaenv Pwa; X Dy (S, dyw98) -
This result shows that the expected number of contacts
obtained from the overlap of population mean density fields
is equal to that obtained from the sum of the overlap of
individual neuron density fields.

A5.2. APPROXIMATION — UNIFORMITY IN AXONAL
DENSITIES IN THE LOCAL ENVIRONMENT OF
DENDRITIC VOXELS

The distance criterion § defines a maximal range around a
dendritic voxel within which axonal voxels may contribute
to synaptic contacts. In a highly irregular axonal density
field (such as those of individual neurons), all the axonal
voxels in the local environment must be included in the
summation of (A22). However, a simplification of (A22) can
be obtained if it can be assumed that the axon densities p,,4
in voxels w in the local environment of a dendritic voxel v
do not differ much from the axon density p,,4 in the dendritic

voxel v itself. In that case, Eq. (A22) can be approximated
by

E{ng§s|8} = (A25)
S4—
cz

~

X Zf}pace Pvp X Pra X sz"” plc]‘ruz})ss (S' dv,w |8)

The second summation Y, <™ Pow > (s,d,|8) runs over all

the voxels w in the local environment of a given voxel v but
does not depend on the position of voxel v. The second
summation thus becomes a fixed number that is only
dependent on the size of the voxels s and the distance
criterion §. It denotes the sum of unweighted conditional
crossing probabilities of line pieces in a central voxel v and
all the voxels w in the local environment of v that contribute
to the sum, given the distance criterion §. We will call this
factor the local environment crossing factor f¢™ (s, §):

f(s,8) = T s (s, dywl 8) - (A26)
Now we obtain from Eq. (A25)
4
Eng518} = 5 X £(5,8) X TP ™ pug X pua. (A27)

Thus the expected number of crossing line pieces between
two density fields for a given value of the distance criterion
6 is now approximated by the overlap sum of both fields

SPAC hoa X Pua (ie., the sum of the density products per

voxel over all voxels in the overlap area of space) multiplied
with the coefficient Z—z X €% (s, 8). If we denote the term

SPAC hoa X Pya in (A27) as the overlap sum Ip, of two
overlapping density fields and the term Z—z X (s, 8) as

the overlap sum coefficient I.,.s , we obtain from Eq. (A27)

E{ng 518} = Lper X Ipa (A28)
with
4
leoer = 75 X f(5,8) (A29)
and
Ips = ipace Pvp X Pya - (A30)

TABLE Al | Local environment crossing factor f¢"V(s, §) (sum of unweighted crossing probabilities of random line pieces in a
central unit voxel and in all the unit voxels in a block of size s), with application of a distance criterion & for the crossing distance
between crossing line pieces. The bold values indicate the minimal block size needed for a given criterion value.
Local environment crossing factor f*"V(s, §)
s # voxels 8= 6=1 6=2 6=3 6=4 =5 =6
1 1 0,3135 0,3087 0,3128 0,3131 0,3129 0,3129 0,314
3 27 1,2469 0,6971 1,1974 1,2476 1,2465 1,2477 1,2462
5 125 2,1121 0,6971 1,3961 1,9694 2,1083 2,1146 2,1113
7 343 2,9697 0,6971 1,3961 2,0977 2,6992 2,9445 2,9688
9 729 3,8262 0,6971 1,3961 2,0977 2,7927 3,4183 3,7384
11 1331 4,6800 0,6971 1,3961 2,0977 2,7927 3,4920 4,1272
13 2197 5,5348 0,6971 1,3961 2,0977 2,7927 3,4920 4,1881
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A5.2.1. Local environment crossing factor f¢"V (s, §) - sum
of unweighted conditional crossing probabilities in the
local environment of a given voxel v

For the local environment of a given voxel v, we will use a
unit grid and take a cubic block of unit voxels of size s, such
that the maximal distance between the central voxel and a
peripheral voxel is at least equal to 6 + 1, as discussed
following Eq. (A19). The size of the block should therefore
be at least equal to 28 + 1. The unweighted sum of crossing
probabilities (local environment crossing factor f¢™ (s, 8))
is now obtained by summing the crossing probabilities for
the central voxel paired with all the voxels in the block
(A25). For results see Table Al. An illustration is given in
Fig. A9, showing for a voxel block of size s,=7 all the voxels
and random lines in each of them. The central voxel is
highlighted in red. The results are shown in Fig. A10A. For
each value of the criterion 8, the curves show initially an
increase with increasing values of the block size, but they
become constant when the block size is equal to or larger
than 26 + 1. For the unconditional case § = co (when no
distance criterion is imposed), the sum (i.e., the number of
expected crossings) increases linearly with the size of the
block for not too small block sizes.

A5.2.2. Local environment crossing factor f¢" (s, &) - local
environment as a single cube of size equal to a block of
voxels

In the previous section AS5.2.1, the local environment
crossing factor f€%(s,8) (sum of unweighted crossing
probabilities) was taken over the local environment v,,, of a
unit voxel v, in the form of a block of unit voxels of size
28 + 1 and centered at voxel v. When the axonal density
field in the local environment of a dendritic voxel has a
uniform density, then the axonal voxels in the local
environment should be replaceable by a single axonal cube
of the same size. Also the sum of crossing probabilities of
random line pieces in the dendritic voxel and in all the local
axonal voxels should be equal to the crossing probability of
a random line piece in the dendritic voxel and a random line
piece in the axonal cube. This consistency will be shown in
the next two sections, the first one (AS.2.3) for the

unconditional case (8=00) and the second one (A5.2.4) for
the conditional case (d=finite).
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FIGURE A9 | A block of voxels of size s,=7 with the central
voxel highlighted in red. Each voxel contains a random line
piece. Each of these random line pieces is tested for crossing
with a (new) random line piece in the central voxel.

A5.2.3. Unconditional unweighted crossing probabilities of
random line pieces in centered cubes of arbitrary size

To generalize the question, we will take two centered cubes
of different sizes and determine whether random line pieces
in both cubes are crossing. For example, Fig. A4B shows
two centered cubes: a unit cube v and a larger cube b. A
random line piece is drawn in both cubes. The probability of
crossing was determined by taking a large number of line
piece pairs (n=1000000) and counting the number of
crossing line piece pairs. The crossing probabilities were
obtained for different sizes of both cubes, i.e., for a cube c/
with size s/ and for a number of centered cubes c¢2 with
varying sizes s2. In the case of crossing line pieces, their
crossing distance was also determined. The results are shown
in the 3rd column of Table A2 and in Fig. Al1.

Size of local environment block s, (um)
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FIGURE A10 | Sum of unweighted conditional crossing probabilities of random line pieces in a central voxel and in each of the s
unit voxels in a centered block of size s. (A) Plot versus the size of the centered block s,. The curves labeled with a positive value of
6 indicate the summed unweighted conditional crossing probabilities. (B) Plot versus the distance criterion §; the curves are
labeled by the size of the block s,. For each value of the distance criterion, the local environment factor has a maximum value,
provided that the block size is of sufficient size. A linear fit through these maxima is drawn as a continuous line.
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TABLE A2 | Unconditional crossing probabilities of random line pieces in centered cubes of different size (n=1000000). (1st
column) Size cube 1; (2nd column) Size cube 2; (3rd column) Unconditional crossing probabilities; (4th column) Same values as in
3rd column but normalized for the density of line pieces; (5th column) Sum of crossing probabilities of random line pieces in a
central voxel and in all the voxels in a block (cube2); (6th column) Difference between the values of the 4th and the 5th column.
size cubel size cube2 peross voxel peross voxel b!OCk sum pcross block difference
block normalized
1 1 0,3124 0,3124 0,3135 -0,0011
1 3 0,1386 1,2472 1,2469 0,0003
1 5 0,0845 2,1119 2,1121 -0,0002
1 7 0,0603 2,9565 2,9697 -0,0132
1 9 0,0474 3,8418 3,8262 0,0157
1 11 0,0386 4,6702 4,6800 -0,0098
1 13 0,0330 5,5699 5,5348 0,0351
0.4 6w ES5
s$,=1 um y=a+bx P S Y] = s;=1 um B
> = S a=-0.04132 il o ) =a+b
2 03] & oo D040 °8 849 S
@ ® e b=0.52496 - 148 S b=0.31002
2 o o c=-0.43252 w § 2 3]
= ° g=-10968 o,
5021, 1Pe 2
Z 123 2 27
7] o (=]
o 014, =3 5
O 11& c N
Wa L —] [v]
o = ]
Qe — 10 = S0+
0123456738 910111213 012345678 910111213
ca s,=1pum C ! &({J E‘: ! s=1pum D
z z 8
J 527 g 5
: -
g .21 55 .5
2 @ £
@ B ]
w [e] (=]
o 0.14 o G
S g =
0 =0 < 20+
0 02040608 1 12141618 2 0 020406081 12141618 2
0.4 1¢ EI1
- 5,=0.6 um E Y] = 5,=0.6 um F
Z g 3
3 0.34 g g
g a3
3 0.2 152 o5
[=2] @ k=
& =) @
8 0.1 s £
2 & &
0 02040608 1 12141618 2 0 020406081 12141618 2
Size 2nd cube (um) Size 2nd cube (um)
FIGURE A1l | Unconditional crossing probabilities of random line pieces in centered cubes of different size. (A) Octant data
points show the crossing probability of random line pieces in cubes of size s;=1 um and of sizes s,=0.2 - 13 um, respectively. Triangle
data points show the crossing probabilities, normalized for the size of s,. The continuous lines through the data points for s,>2 show
the best fitting power function of the crossing probability data (red curve) and the best fitting linear function of the normalized data
(blue curve). (B) Mean crossing distance between crossing line pieces. The continuous line through the data points for s,>2
represents the best fitting linear function (red curve). (C) Octant data points show the crossing probability of random line pieces in
cubes of size s;=1 um and of sizes s,=0.1-2 um, respectively; triangle data points show the crossing probabilities, normalized for the
size of s,. (D) Mean crossing distance between crossing line pieces. (E) and (F) are similar to (C) and (D) but with a size for cube 1 of
5;=0.6 um. The continuous lines through the data points in panels (C)-(F) are linear interpolations between successive data points.
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Figs. A11A, C, and E show that the crossing probability
reaches the maximum value of 0.3133 when both cubes are
of equal size (s2=s1) (Eq. A4):

P95 (s, ='s,) = 0.3133.

For s, < s; the crossing probability sharply declines, while
for s, > s; the crossing probability gradually declines. For
s, = 2, this dependency could well be fitted with a power
law function

P (s1=15,22)= (A31)

= 0.00243 + 0.525 X (s, + 0.433)71097 |

These results should now be compared with the summed
crossing probabilities of line pieces from the central voxel
and each of the voxels in the larger cube. These values were
already calculated in the 3rd column of Table Al, for which
no distance criterion was applied (6=w). These values are
included in the 5th column of Table A2. For a proper
comparison between the values in the 3rd and the 5th
column of Table A2, a normalization is needed.

For the voxel-block calculations, single random line pieces
are obtained in both centered cubes. A single random line in
a cube represents a mass density equal to its length divided
by the volume of the cube (Eq. A8). The mean length of a
random line in a cube scales linearly with the size of the
cube L.(s;) = C X s. (Eq. A4), while the volume of a cube
scales as V.(s.) = s2. The mass density in the cubes thus
scales as p.(s) = L.(s)/V.(s)=C/s? . For a valid
comparison between the different sizes of the 2nd cube, we
thus need to normalize for equal mass densities by
multiplying the crossing probabilities with s°. These
normalized crossing probabilities, (Fig. A11A, triangle data
points) appear to scale quite linearly with the size s, of cube
2 for s, values larger than about 2s;; for this range the
triangle data points could well be fitted with a linear function

pii%s (51 = 1,8, = 2|normalized) =

= —0.0413 + 0.4296 X s, . (A32)
For single random lines, this means that the gradual decline
of the crossing probability with increasing size of cube 2 is
fully attributable to the decrease in mass density. The
normalized values are also shown in the 4th column of Table
A2. Now a comparison can be made between the voxel-
block approach and the voxel-voxel sum approach. The
differences between both, shown in the 6th column of Table
A2, are very small, down to the precision of the calculations.
Thus it can be concluded that both approaches give
consistent results.

A5.2.4. Conditional weighted crossing probabilities of
random line pieces in a central voxel and a centered cube
As we did for Eq. (A20), we may write the expected number

of synaptic contacts E5g"(8) of a dendritic line piece in a

unit voxel v with axonal line pieces in the centered cube ¢
for a given distance criterion 9§, as the product
ES3™(8) = pEross (s 18) x plif x plit (A33)
with p5r°° the conditional crossing probability of random
line pieces in voxel v and cube ¢ of sufficient size s, pif the
probability that the central unit voxel v contains a dendritic
line piece, and p/* the probablity that the centered cube ¢
contains an axonal line piece. As in Eq. (A10), the hit
probabilities ptY¥ and plif directly relate to the mass
densities in the central unit voxel and the cube, respectively:

hit _ S5XPvd

phif = 2xbnd and
(A34)
phit — masscaq — SEXpca — sEXpca
ca intersectionlength SeXC C ’

assuming a uniform axon density p., in the cube, which is
thus equal to axon density in the central voxel v (pzq = Ppa)-
Insertion in Eq. (A33) now gives for the expected number of
contacts

2 2
ESTM(8) = pgross(s.18) X 225 X pug X ppg . (A35)

C

The conditional crossing probabilities pgr®*(s.|8) were

obtained by simulating 1.000.000 pairs of random line pieces
in the central voxel and in the centered cube, with results
shown in Fig. A12 and listed in Table A3. For example, for a
distance criterion of 6=4, and a cube size of s.= 9 (=26+1),
i.e., containing all the voxels that may contribute to
connectivity with the central voxel, we obtained

P’ (s, = 9|6 =4,s, = 1) = 0.0345 (A36)
and for the expected number of synaptic contacts with
dendritic voxel v

conrs _ __ 0.0345x9? _
Evd (6—4) =prvdxpva =
=6.290 X ppg X Pya - (A37)
TABLE A3 | Conditional crossing probabilities between a
random line piece in a central voxel and a random line piece
in a centered cube
Distance . Conditional crossing
. Cube size s, .
criterion 8 probability
1 3 0,0775
2 5 0,0556
3 7 0,0428
4 9 0,0345
5 11 0,0288
6 13 0,0247
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The coefficient in Eq. (A37) is equal to the overlap sum
coefficient I, s in Table A4 for § = 4; this also shows that
the voxel-cube approach gives the same result as the sum of
voxels in the block approach, under the assumption of a
uniform axon density in the neighborhood of a dendritic
voxel.

TABLE A4 | Overlap sum coefficient of two overlapping
density fields
Distance .
criterion Local environment factor ~ Overlap sum
s (s =1,8) coefficient I of
1 0.6971 1.569
2 1.396 3.142
3 2.098 4.723
4 2.793 6.287
5 3.492 7.860
6 4.188 9,427

A5.2.5. Overlap sum coefficient 1.,.; and closed expression
of E{n{ 3|5}
With the values for the local environment factor f¢™ (s, §)
(for s=1), the overlap sum coefficient I;,.r can now be
calculated explicitly using Eq. (A29) with the results given
in Table A4. In Fig. A10B the local environment factor is
plotted versus the distance criterion 8. For each value of 6,
the local environment crossing factor has a maximum value,
provided that the block size is of sufficient size. A linear fit
through these maxima is drawn as a continuous line:
(s =1,8) = 0.00016 + 0.69822 x |§| (A38)
with |8] used here as a dimensionless variable. When an
accuracy of at least 0.2 promille is sufficient, we may

disregard the constant, so that the overlap sum coefficient
Icoer can then be approximated by

4
Leoes = Z—Z % 0.6982 x |8] = 1.572 x s* x |8]  (A39)
and the expected number of crossing line pieces in the
overlap area is equal to

E{n§3ss|8} = 1.572 x |§| X s* X Ip, . (A40)

A5.3. CROSSING DISTANCES BETWEEN CROSSING
LINE PIECE PAIRS IN CENTERED CUBES OF DIFFERENT
SIZE
In the case of a crossing line piece pair, the crossing distance
was also determined. The mean crossing distance between
crossing line pieces for s,=1 um and different sizes s, of the
2nd cube appeared to scale linearly with s, for s,>2 (Fig.
Al1B):
dmn(s; =1) =0.334 (Eq. All)

(A41)

dmn(s; > 1) =0.0013 + 0.310 X s, .

Both the crossing probability and the mean crossing distance
for s,=1 do not follow the scale behavior that is shown for
s;>1. To investigate this behavior in more detail, we
performed similar calculations for sizes of cube s, between
0.1 and 2 (Fig. A11D) and for a smaller size of cube s/ (0.6)
(Fig. A11F).

As in Fig. AllA, also the data curves for the
unnormalized crossing probabilities (i.e. of single line piece
pairs) in Figs. A11C,E show the same maximum value of
pcross=0.3133 when both cubes are of the same size. This is
in agreement with the finding in Eq. (A12) that the crossing
probability of line pieces within the same cube has a
constant value of 0.3133, independent of the size of the cube.
When the centered cubes are of different size, the line pieces
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in a pair will on average be at a larger crossing distance from
each other compared with line pieces within the same
smaller cube. Thus, the crossing probability of random line
pieces in centered cubes of different size will be smaller than
the crossing probability of random line pieces in the same
cube. The crossing distance curves (Figs A11B,D,F) also
show a rather linear pattern when the 2nd cube becomes
smaller than the 1st cube. The crossing distance stabilizes
towards a value of about 0.31 when the 1st cube has size
s;/=lum, and towards a value of about 0.186 when the Ist
cube has a size of 5;=0.6 pum. This can be understood by
considering that a small 2nd cube is in the center of the 1st
cube, and constrains one end of the orthogonal connection
line between both line pieces to this small volume. The other
end can be at any point within the larger cube. The length of
the orthogonal connection line appeared to depend linearly
on the size of the larger cube:

limg, o dmy(S1,52) = 0.31 X sq . (A42)
Note that if one of the cubes becomes very small, also the
crossing probability becomes very small.

Generalization

The crossing probability of two random lines within a cube
appeared to be independent of the size of the cube, see Eq.
(A12):

pE%S(sy = s,) = 03133, and
(A43)

pétes (asy,asz) = pire; (s1,52)

for any value of the constant a.

A6. INVARIANCE OF THE SCALE OF THE GRID FOR
THE CALCULATION OF CROSSING PROBABILITIES

The scale of the grid, i.e., the size of the voxels, should be a
free parameter in the discretization of space. However, the
use of the distance criteron 6 may set conditions on the
choice of the grid size. The grid size is important for the
spatial resolution of the density fields. Particularly in the
case of density fields of individual neurons it sets a lower
limit on the fine structure of individual branches. The
procedure for calculating the crossing probabilities between
random lines in different voxels is invariant to the scale of
the grid, which can be proven as follows.

Given, a cube of arbitrary size s, that is intersected by a
random line from field 4 and a random line from field B.
These random line pieces inside the cube will cross each
other with a probability of (Eq. A12)

pco% = 0.3133,
which is independent of the size s. of the cube. These
random line pieces have a mean length of C X s, with
C = 0.66653 (Eq. A4) which corresponds to a mass m,., and

me.p wWith

me =CXs, and meg =C X s .

Assuming uniformly distributed masses over the cube these
two line pieces determine densities of (Eq. A8)
mc

c C :
pa=—==— and pg = =, respectively.
sg s¢ Sc

Crossing of random line pieces in all pairs of voxels in a
block of unit voxels - When the cube is superposed by the
unit grid with unit voxels (s, = 1), random line pieces can
be obtained in any voxel, given these field densities, with hit
probabilities given by (Eq. A10)

poi = pa xs5/C
and (A44)

hit ~

Pve = PB XSE/C~
A random line piece in voxel v and in voxel w will cross
each other with a probability of pgi)°%° (d,,,w|8), which is
dependent on the distance d,,,, between both voxels and the
criterion value § (Figs. A6 and A8). Summing these crossing
probabilities of line pieces for all the voxel pairs in the cube

gives an unweighted expected number of crossing line piece
pairs

Eunw{n.ﬁTgss (cubel&)} =Z1c;ube Zﬁf‘be pg‘r‘gss (dv,w|8)~
(A45)

The results of these unweighted expected number of
crossings are shown in Table A5 for different cube sizes and
criterion values.

TABLE A5 | Unweighted expected number of crossing line
pieces in all voxel pairs in a cube
n=1000 8
cube oo 1 2 3 4
size s,
1 0,313 0,319 0,293 0,304 0,315
2 4,969 3,761 5,076 4,945 5,003
3 25,433 14,467 21,973 25,243 25,401
4 80,235 36,974 60,685 73,167 78,856

Taking the hit probabilities into account gives the weighted
expected number of crossing line piece pairs

E, {nf{gss (cube)| 8)} = (A46)

— \'cube cube ., hit hit Ccross
- Zv w va X po X pv,w (dv,w|8)-

Because the masses of both fields in the cube are distributed
uniformly over all the voxels the voxel hit probabilities are
equal for all the voxels. The quantity pif x pM¥ can thus be

put before the summation in Eq. (A46) with
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TABLE A6 | Crossing probabilities of random line intersections of two fields A and B of a cube of size s.=3 for all the 27% =729 unit
voxel pairs in the cube. (1st column) Distance criterion; (2nd column) Unweighted crossing probabilities of two random line
intersections in the cube; (3rd column) Densities of field A and field B are taken so that the hit probability for the cube is equal to
one; (4th column) Weighted crossing probabilities; (5th column) Sum of unweighted crossing probabilities of random line pieces in
all voxel pairs in the cube; (6th column) Voxel hit probabilities for the given field densities; (7th column) Weighted sum of voxel-voxel
crossing probabilities.

Scube=3 ncnt=100000

Cross Cross

cross hit cross . sum p Vox- hit sum p VOoXx-

8 p  cube p cube p  cube hit vox p voxel vox hit

oo 0,3138 1 0,3138 25,3566 0,1111 0,3130

1 0,1806 1 0,1806 14,5558 0,1111 0,1797

2 0,2742 1 0,2742 22,2021 0,1111 0,2741

3 0,3099 1 0,3099 25,0197 0,1111 0,3089

4 0,3132 1 0,3132 25,3370 0,1111 0,3128

syn
number of synapses E {n " } over these compartments, so
E, {ng§% (cube|8)} = pJi x pjff x that
X Zcube Zcube psu)ss (dv,wla) — E{nzyn} — { syn . (A49)
_ . h h

= Pt X D X Eynw{nglg™ (cube|5)} (A47)  Make the number of compartments so large that the expected

it . number of synapses per compartment E{n”"} becomes
with the voxel hit probabilities p,4 and pyg given by Eq.  much smaller than one. Then this value per compartment can

(A44). For instance, for a cube of size 5=3, the field g interpreted as the probability p;>" of finding a synapse in

O _ 2 .
densities becohrlne pAh; g =C/s¢c =0074, and the hit g compartment. The probability p_°*" of not finding a
nosyn __
=1-

probabilities pps = pys = 0.1111, so we obtain synapse in that compartment is then given by p,
syn

p.. . The product of the no-synapse probabilities of all
compartments in area 4, assuming independency, then yields

hit

E,{n58% (cube|8)} = 0.01234 x

eross the probability of no-synapse in the overlap space, p,°*" =
X Eynu{ngs™ (cube|8)} = [1F(1 = p2’™). The connection probability p5°", i.., the

probablllty of at least one contact in the overlap space, is
then given by p§°" = 1 — p,*~™.

The expected number of contacts per connected neuron
pair E{M} is given by the ratio of the expected number of

contacts in the overlap area divided by the connection

= 0.01234 X 25.3566 = 0.3129 (A48)

(see Table A6). This outcome is equal to the expected value
of p°% = 0.3133 of the two random line pieces in the
whole cube which proves that the procedure for calculating

the crossing probabilities between line intersections is probability,
invariant for the scale of the spatial grid. This conclusion synY /. con
holds also for other values of § as is shown in Table A6. E{M} = E{n""}/p5" . (A50)

A7. ESTIMATING THE CONNECTION PROBABILITY This relation can be (terived as follovys: Let n(i) denotes the
number of neuron pairs connected with i contacts. The total

AND THE EXPECTED NUMBER OF CONTACTS PER

CONNECTED NEURON PAIR FROM THE EXPECTED

NUMBER OF SYNAPTIC CONNECTIONS

Let area 4 be the overlap area of an axonal and a dendritic
density field, containing an expected number of synaptic
connections E{n;”"}. The connection probability p5°" that Yimaxix p(i) . The connection probability is given by
the axonal and dendritic neuron are connected (i.e., have at peon = 1 Zlmax () =2 n(O) )
least one synaptic contact) can be estimated theoretically n .

syn contacts per connected neuron pair becomes E{M} =
from the expected number of synaptic connections E { i i i

Simar i x (i) /S p(i) = £imex i x n() /n — n(0) =

in the following way. Partition the overlap area A4 into a an{l} E(l)
number of C small (for instance cubic) compartments. = — """ = "o, which proves Eq. (A50).
Distribute in an arbitrary way (say uniformly) the expected

number of pairs is then given by n = Zlm“" n(i), while

p(@) = % denotes the probability that a given neuron pair
has i contacts. The expected number of contacts in an
arbitrary neuron pair is given by E{i} = %Zlm“"l xn(i) =

The expected number of
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Fig. A13 shows how the connection probability and the
expected number of contacts per connection depend on the
expected number of contacts. The procedure for estimating
the connection probability is independent of the number of
compartments or the way the quantity E{n.} is distributed
over the compartments, as long as the wvalues per
compartment remain much smaller than one, and
independency can be assumed between the compartments.
However, as is shown in the section ESTIMATION OF THE
CONNECTION PROBABILITY FROM THE EXPECTED NUMBER
OF CONTACTS of the paper, synapse locations are not
independently distributed in space, and the empirical
relationships between number of contacts on the one hand,
and connection probability and number of contacts per
connection on the other hand, are different from the curves
in Fig. A13 (see also Figs. 6 and 8 in the paper).
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FIGURE A13 | Connection probability and expected number
of contacts per connected neuron pair derived from the
Expected number of contacts.

Frontiers in Computational Neuroscience www.frontiersin.org November 2013 | Volume 7 | Article 160 |

16



