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A1.1. UNIFORM RANDOM LINE INTERSECTIONS OF A 
SQUARE IN 2D 
A uniform random line in 2D space is a line with a uniform 

random orientation drawn from a random point in the 2D 

space. A uniform random orientation is obtained by taking a 

uniform random angle with respect to the X-axis in the 

interval [-90,90] degrees via  

  

                      (A1) 

  

with rand indicating a uniform random number in [0,1). The 

selection of a uniform random point in 2D space through 

which the line is drawn can be simplified by taking a 

uniform random point on a 1D infinite line perpendicular to 

the random orientation ('look-up line'). When it concerns the 

selection of a random line through a square, the infinite 

'look-up' line can be reduced to a finite 'look-up' line piece 

(L) of such a size that it covers the full square, as seen from 

any orientation of the random line (Fig. A1A). Then it 

suffices to select a uniform random point (A) on this finite 

'look-up' line piece through which the random line is drawn. 

It is crucial that the 'look-up' line pieces are of the same size 

for any orientation of the random line, to guarantee that the 

square is seen by line beams with the same line density for 

any orientation. For a square of size s, the 'loop-up' line 

should have a length of at least  √  (the length of the 

diagonal in the square). Lines with the given random 

orientation and drawn from random points on the 'look-up' 

line piece may or may not hit the square, depending on the 

orientation of the square with respect to the line. The 

probability of hitting the square is proportional to the length 

of the projection of the square onto the 'loop-up' line piece. 

This fact guarantees that the square is probed with constant 

density line beams for any orientation of the beam.  

The intersection of a random line with a square is indicated 

by the points P and Q in Fig. A1A. The length distributions 

of these intersections are displayed in the graphs of Fig. A2. 

The mean (sd) intersection length is equal to  

 

          
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅                      .  (A2) 

 

The intersection length distribution for a square (Fig. A2A) 

has a complex shape, and is composed of two components. It 

has one component for the intersections of opposite sides 

which have a length range of     √   (Fig. A2B) and one 

component for the intersections of two neighboring sides 

which have a length range of     √   (Fig. A2C). A 

particular property of the angle distribution of the 

intersecting line pieces is that it is not uniform but has 

maxima at angles of -45 and 45 degrees (Fig. A2D). This is 

caused by the fact that lines with these orientations see the 

square from a diagonal point of view, such that the square 

captures most of the random lines (a square is not a circular 

object). A typical set of intersections of uniform random 

lines with a square is shown in Fig.A2E.  
 

A1.2. UNIFORM RANDOM LINE INTERSECTIONS OF A 
CUBE IN 3D 
The generation of uniform random lines in 3D follows the 

same principle as in 2D. A random line in 3D space is a line 

with a uniform random orientation drawn from a random 

point in 3D space. A uniform random orientation is obtained 

by taking a uniform random azimuth angle with respect to 

the X-axis in the interval [-90,90] degrees via Eq. (A1) and a 

sine-weighted random elevation angle  via 

 

                        .      (A3) 

 

 

 

FIGURE A1 | Uniform random line intersections in (A) a square and in (B) a cube. 
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The selection of a uniform random point in 3D space 

through which the line is drawn can be simplified by taking a 

uniform random point in a 2D infinite plane perpendicular to 

the random orientation ('look-up plane'). When it concerns 

the selection of a random line through a cube, the infinite 

'look-up' plane can be reduced to a finite 'look-up' plane (V) 

of such a size that it covers the full cube, as seen from any 

orientation of the random line (Fig. A1B). Then it suffices to 

select a uniform random point (A) on this finite 'look-up' 

plane through which the random line is drawn. It is crucial 

that 'look-up' planes of the same size are taken for any 

orientation of the random line, to guarantee that the cube is 

seen by line beams with the same line density for any 

orientation. A cube of size s is, for any angle, fully covered 

by a square of size  √ , the length of the diagonal in the 

cube. Lines with the given random orientation and drawn 

from random points on the 'look-up' square may or may not 

hit the cube. The number of hits depends on the orientation 

of the cube with respect to the line, because the number of 

hits is proportional to the projection area of the cube onto the 

'look-up' plane. This fact guarantees that the cube is probed 

with constant density line beams for any orientation of the 

lines.  

The intersection of a uniform random line with a cube (in the 

following denoted by a random line piece in a cube) is 

indicated by the intersecting points P and Q in Fig. A1B. The 

length distribution of the intersections of the cube by 

uniform random lines (Fig. A3A) has a mean (sd) of  

 

        
̅̅ ̅̅ ̅̅ ̅̅ ̅                        .    (A4) 

 

This distribution has also a complex shape with two 

components, one of lines intersecting opposite cube side 

planes (Fig. A3B), and one of random lines intersecting 

neighboring cube side planes (Fig. A3C). Intersections 

between neighboring side planes can be as short as zero, and 

as long as the cube diagonal, thus with range     √  . 

Intersections of opposite side planes cannot be shorter than 

the size s of the cube, but can also be as long as the cube 

diagonal, thus with range     √  . The azimuth angle 

distribution of the intersecting line pieces (Fig. A3E) does 

not show a uniform random pattern, but two peaks at the 

angles of -45 and of 45 degrees. A similar argument to that 

in the 2D case can be applied here, in that uniform random 

lines with these orientations see the cube with the largest 

area and thus with the highest hit probability. The elevation 

angle distribution (Fig. A3F) deviates from the sine pattern 

(expected for uniform random line pieces) by having two 

maxima. They are located at smaller angles than the 

elevation angles of +35.3 and - 35.3 degrees of the 

diagonals; this is probably a convolution effect of the 

original sine shape with the orientation-dependent 

intersection pattern. A typical set of intersections of uniform 

random lines wth a cube is shown in Fig. A3G. 

 

A.1.3. OTHER PROCEDURES FOR GENERATING 
RANDOM (BUT BIASED) LINE INTERSECTIONS WITHIN 
A SQUARE OR CUBE 
Three other procedures were initially explored but with 

biased results. The first one was to select at random two 

planes of a cube, and then select a random point on each 

plane. The connection is then a random line. However, the 

angle distribution of these lines is biased because line pieces 

connecting two points in neighboring planes have an angle 

distribution influenced by the orthogonal orientation of the 

side planes in the cube.  

 The second procedure was to select two uniform random 

points in the cube and then to draw a line between both 

points. These line pieces, however, have also a biased angle

 

 
 

FIGURE A2 | Intersections of uniform random lines with a square of size ss=1 m. Shown are (A) the length distribution of the line 
intersections, (B) the length distribution of line intersections of opposite sides of the square, (C) the length distribution of line 
intersections of neighboring sides of the square, (D) the angle distribution of the intersections, as well as (E) a typical set of random 
line intersections.  
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distribution beause in corner areas of the cube the majority 

of the line pieces originate from points from the main 

volume of the cube and hence have a clear orientation bias.  

 The third procedure was to select a uniform random 

point in the cube and then to draw a line with a uniform 

random orientation through that point. This procedure results 

in uniform random azimuth angle distributions and cosine 

shaped elevation angle distributions. However, these line 

pieces do also not agree with the characteristics of uniform 

random lines in space. When applied to the internal sphere of 

the cube, such a procedure would indeed produce uniform 

random line intersections. However, when random points are 

selected in the corner areas of the cube outside the internal 

sphere, random orientations may result in intersections that 

do or do not hit the internal sphere. The intersections that 

also hit the sphere would result in an orientation bias in the 

intersecting line densities. 

 
A2. DENSITY FIELDS 
In a discretized space with voxel size    and filled with 

uniform random lines, each voxel may be hit by these lines 

resulting in an intersection of a certain length. When a given 

voxel is hit by multiple lines the total length of its 

intersections then correlates with the number of hits. The 

mean length of the intersections in the given voxel is equal 

to            (Eq. A4), and in a statistical sense the 

expected total length of the intersections   
    can be related 

to the expected number of hits  {  
   } as  

 

   
                {  

   }        {  
   }   (A5) 

 

with          . When the expected number of hits is 

much smaller than one, we may replace the expectation of 

the number of intersections by the intersection (hit) 

probability   
    itself (note that under this condition the 

probability of more than one intersection becomes negligibly 

small): 

 

     
      

         ⁄  .       (A6) 

 

These expressions are also applicable when the local density 

of random lines is not uniform. In that case the hit 

probability   
    may differ from voxel to voxel.  

 

A2.1. VOXEL HIT PROBABILITIES AND FIELD DENSITIES 
The density field of an arborization reflects the distribution 

of its 'mass' over the unit grid in 3D space, and the local 

density    in each unit voxel denotes the expected amount of 

'mass'    in that voxel. If mass is expressed in the length of 

the branches of the arborization, then the density in each unit  

voxel denotes the expected length   
    of the branches in that 

unit voxel. A voxel of size sv then contains a total branch

 

 
 

FIGURE A3 | Intersections of uniform random lines with a cube of size sc=1 m. Shown are the (A) length distribution of random line 
intersections, (B) length distribution of random lines intersecting opposite side planes of the cube, (C) length distribution of random 
lines intersecting neighboring side planes of the cube, (D) length distribution of the projection of random line intersections on an 
arbitrary side plane of the cube, (E) azimuth angle distribution of random line intersections, (F) Elevation angle distribution of random 
line intersections, as well as (G) 100 intersections of uniform random lines with a cube. 
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length   

    equal to the local density times the volume of the 

voxel 

       
         

  .       (A7) 

 

Conversely, a given total length of branches (line pieces) 

  
    in a voxel of size sv represents a density of  

  

          
      

  .       (A8) 

 

Combining Eqs. (A5) and (A7) yields the expected number 

of intersections of the voxel by the line field:  

 

    {  
   }    

       ⁄       
  ⁄  .    (A9) 

 

If this expectation is much smaller than one, we obtain the 

probability for a voxel to be hit by a branch of the 

arborization as expressed in terms of the densities: 

 

       
          

  ⁄  .           (A10) 

 
A3. CROSSING OF RANDOM LINES 
In a recent study, we developed an algorithm for finding 

synaptic locations in an area innervated by both axonal and 

dendritic arbors (Van Pelt et al., 2010). The algorithm is 

based on finding pairs of axonal and dendritic line pieces 

that cross with a crossing distance smaller than or equal to a 

given criterion distance . In this Appendix, we study the 

crossing properties of random line pieces in the same or in 

different voxels.  

 

A3.1. CROSSING OF RANDOM LINE INTERSECTIONS 
WITHIN A SINGLE CUBE 
The crossing probability of two random line pieces in a cube 

is obtained by generating a large number of pairs of random 

line pieces (n=1000000) according to the procedure 

described in section A1.2. and by determining for each pair 

whether they are crossing (Fig. A4A). The crossing 

probability is equal to the ratio of the number of crossing 

line piece pairs and the total number of line piece pairs. In 

the case of crossing line pieces, the length of the orthogonal 

connection (crossing distance) is determined according to the 

algorithm described in Van Pelt et al. (2010). The frequency 

distribution of crossing distances within a single cube of size 

s=1 (Fig. A5) has a mean of 0.334 and a standard deviation 

of 0.256. The crossing distances scale linearly with the size s 

of the cube, in such a way that mean    
         and standard 

deviation    
         of the crossing distance distribution 

become 

 

    
                  and     

                  . 

             (A11)  

 

The crossing probability of two random line pieces in a cube 

was found to be equal to  

 

                   ,    (A12) 

 

which is independent of the size of the cube. Note that for 

the geometry of (crossing) line pieces in a cube the size of 

the cube is not relevant. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

FIGURE A4 | Crossing line pieces in voxels and cubes. Shown are (A) two crossing random line pieces PQ and RS in a cube with their 
crossing distance TU; (B) a random line piece in a cube and a random line piece in a voxel;  and (C) two voxels in a cube within which 
each a random line.  

 

 
 

FIGURE A5 | Frequency distribution of the crossing distances 
between two crossing random line pieces within a voxel of 
size s=1. 
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A3.2. CROSSING OF RANDOM LINE PIECES IN 
DIFFERENT CUBES 
In a similar manner we can obtain the probability that 

random line pieces in two different cubes cross (Fig. A4C). 

The procedure was first to get two cubes v and w of size s 

with their corners at             and           , 

respectively. The distance      between the cubes is given 

by  

 

     √                           .  (A13) 

 

Second, a random line piece was obtained in both cubes, and 

third it was determined whether the two line pieces were 

crossing. The crossing distance was obtained according to 

the algorithm described in Van Pelt et al. (2010). The 

crossing probabilities, shown in Fig. A6A, are obtained for 

unit cubes (i.e. with size s=1 m). The crossing probabilities 

appear to decrease strongly with the distance between the 

cubes. The figure contains three curves, calculated for 

stepwise shifts of 0.2 m of the cubes in the x-direction (red 

curve), the xy-diagonal direction (dark blue curve) and the 

xyz-diagonal direction (light blue curve). The precise 

overlap between the curves indicates that the crossing 

probability of random lines pieces in a cube pair is 

dependent on their Euclidean distance but independent of the 

orientation of both cubes with respect to each other. 

A block of unit voxels of size    contains   
  unit voxels, and 

hence a similar number of ways exists to pair the central 

voxel with any of the voxels in the block. For each voxel 

pair the crossing probability of random line pieces in the 

central voxel with one voxel in the block was calculated. 

Fig. A6B displays these crossing probabilities for a block of 

size       m (with in total          voxel pairs). 

The maximal distance between the central voxel and a corner 

voxel in the block was       √          . For 

overlapping voxels (      ) we had already (Eq. A6) 

 

                          .   

 

For non-overlapping voxels v and w (        the data 

points were fitted with a power law function  

 

            (      )              (A14) 

 

with best-fitting parameters a=32.75; b=-34.10; c=0.1966; 

and d=0.02383. Using the approximation           , 

we replaced the factor 

 

                      (A15) 

 

resulting in 

 

            (      )   

                                    

and 

       (      )   

                                   .  (A16) 

 

A4. CONDITIONAL CROSSING PROBABILITY 
A4.1. CONDITIONAL CROSSING PROBABILITY OF 
RANDOM LINE PIECES IN A SINGLE CUBE OF 
ARBITRARY SIZE 
Two random line pieces in a cube of size sc will cross each 

other with a probability of (Eq. A12) 

 

                   

 

and a mean crossing distance of (Eq. A11) 

 

          ̅̅ ̅̅ ̅̅ ̅̅           .  

 

For the conditional crossing probability              

between random line pieces in a single cube, a constraint of 

  m is set on the maximal crossing distance between 

crossing line pieces. 

 

 
 

FIGURE A6 | Crossing probabilities of random line pieces in two different unit cubes, plotted versus the distance between both 

cubes. (A) The cubes are stepwise (0.2 m) shifted in the x-direction (red curve), the xy-diagonal direction (dark blue curve, and the 
xyz-diagonal direction (light blue curve). (B) The random line pieces are taken in the central voxel and in each of the 13

3
 =2197 voxels 

in a block of size s=13 m. The continuous red line is a best fit with a power function, for distances larger than or equal to 1 m.   
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Thus only those pairs of crossing line pieces are selected that 

have a crossing distance that does not exceed the constraint 

of   m. This condition makes the conditional crossing 

probability dependent on the size    of the cube, as is shown 

graphically in Fig. A7. These outcomes are obtained by 

calculating crossing probabilities for a range of cube sizes of 

[1,13], for a range of criterion values   of [1,13], and for the 

unconditional case (i.e.,    ). Each outcome is the mean 

value for a large number of random line piece pairs 

(n=1.000.000). Fig. A7 shows that the unconditional 

crossing probabilities (   ) are independent of the size of 

the cube, as was already stated at Eq. (A12). The conditional 

crossing probabilities (finite  ), however, depend strongly on 

the cube size   . For instance, for       , crossing line 

pieces are accepted only when their crossing distance is 

smaller than 1 m. This strong requirement has the largest 

effect in large cubes, when on average the crossing distances 

vary over larger ranges (lowest curve in FigA7A).  

 

A4.2. CONDITIONAL CROSSING PROBABILITY OF 
RANDOM LINE PIECES IN VOXELS AT A GIVEN 
DISTANCE 
When a distance criterion    is applied to the crossing 

probability of random line pieces in two different voxels v 

and w, the conditional crossing probability                   

also becomes dependent on the distance      between the 

two voxels (Fig. A8). These outcomes were obtained by 

taking random line pieces in all the   
  unit voxels in a cube 

of size sc and testing their crossing with random line pieces 

in the central voxel of the cube. Note that the size of the unit 

voxels is equal to 1 m. Evidently, the conditional crossing 

probability for a voxel pair v,w at larger intervoxel distance 

     than the criterion distance   is zero, 

  

          (         | )    .   (A17) 

  

Likewise, the conditional crossing probability of a voxel pair 

at smaller intervoxel distance than the criterion distance is 

equal to the unconditional crossing probability for that 

distance,  

 

        (         | )               .  (A18) 

 

For this distance regime the curves in Fig. A8 are identical to 

the one in Fig. A6B. Voxel pairs at intervoxel distances 

around the criterion distance have lower conditional crossing 

probabilities,  

 

        (         | )               .  (A19) 

 

For instance, for        only the voxels directly 

surrounding the central voxel contribute: there are 6 voxels 

at a distance of     , 12 voxels at a distance of √    , and 

8 voxels at a distance of √    . Fig. A8 shows that for a 

given distance criterion  , voxels at a maximal distance of 

    from the central voxel have a nonzero crossing 

probability. The sum of the crossing probabilities over all 

these voxel pairs in the block denotes the total expected 

number of crossings between random line pieces in the 

central voxel and in all the voxels in the local environment 

of the central voxel, as determined by the distance criterion 

 . The continuous line in each panel indicates the cumulative 

sum with increasing voxel distance.  
 

A5. OVERLAPPING DENSITY FIELDS 
A5.1. EXPECTED NUMBER OF CROSSING LINE PIECES 
IN AN OVERLAP AREA OF TWO DENSITY FIELDS 
Suppose we have two density fields D and A with densities 

   and   , respectively, with an area in space where they 

overlap. In this overlap area each voxel of size s will contain 

a mass        from field D and a mass        from field 

A. As discussed above, these masses can be related to the 

probabilities    
    and    

    that the voxel is intersected by 

lines of field D and field A, respectively. 

 

    

 
 

FIGURE A7 | Crossing probabilities of random line pieces in a cube. (A) Plotted versus the size of the cube (m). Each curve is labeled 

with the value of the distance criterion   (m). (B) Plotted versus the distance criterion   (m). Each curve is labeled with the size of 

the cube (m). 
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For any combination of line intersections of field D and field 

A, we now want to estimate the number of crossings line 

pieces over the given area in space. For a voxel pair v and w 

with an intervoxel distance      the conditional weighted 

probability that a random line piece from field D in voxel v 

and a random line piece from field A in voxel w cross is 

given by 

 

         
     (      | )     

       
         (A20) 

 

       
     (      | )  

      

 
 

      

 
  

 

       
     (      | )          

  

   .   

 

The conditional weighted expected number of crossing line 

pieces of both fields in the overlap area can now be obtained 

by calculating the conditional weighted expected number of 

crossing line pieces that meet the distance criterion in all the 

voxel pairs in the overlap area: 

 

  {    
       }           (A21) 

      

 =∑ ∑     
     (      | )           

  

  

     
 

     
   

 

  
  

   ∑     ∑         
               

     
 

     
 .  

 

The summation in this expression runs over all voxel pairs in 

the given space. However, for each voxel of the field D, 

voxels of field A contribute positively to the summation only 

if the pairs of random line pieces do not cross beyond the 

criterion distance   (Eqs. A17-A19). Thus the second 

summation over voxels w can be restricted to the local 

environment venv of voxel v, resulting in the basic expression 

 

   {    
       }           (A22) 

              

  
  

   ∑    
     
  ∑    

    
      

               .  

 

The local environment of voxel v with coordinates 

           can be defined as the set of all voxels w whose 

coordinates            meet the conditions 

 

                , 

                ,     (A23) 

                . 

 
A5.1.1. Overlap of individual neuron density fields 
Equation (A22) can also be rewritten as the mean of the 

expected number of contacts in pairs of individual neurons. 

The densities     and     were obtained as the average over 

a population of soma-centered and aligned neurons: 

 

     
 

  
∑     

  
   and      

 

  
∑     

  
  . 

 

 

 

 
 

FIGURE A8 | Conditional crossing probabilities of random line pieces from a central voxel and one of the voxels in a block. Each 
data point indicates the crossing probability for one voxel pair, plotted versus the distance between both voxels. The total number of 
data points in a panel denotes the total number of voxel pairs with a positive crossing probability, i.e., of voxels sufficiently close to 
the central voxel, allowing crossing distances of line piece pairs within the distance criterion  . Note that data points in the Figure 
may overlap. The sum of these crossing probabilities over all the voxels in the block denotes the total expected number of crossings 
between random line pieces in the central voxel and in all the voxels in the block. Each panel is labeled with the distance criterion 
value  . The continuous line indicates the cumulative sum.  
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Insertion in Eq. (A22) gives 

 

  {     
       }  

  

   ∑
 

  

     
  ∑     

  
   

 

     ∑
 

  
∑     

  
      

               
    
  

 

and after exchange of summations 

 

  {     
       }  

  

   
 

  
 

 

  
 ∑ ∑  

 
  
  

 

   ∑     
 ∑     

     
               

    
 

     
  

 

The last two summations result in the density overlap of the 

dendritic and axonal field of two individual neurons: 

 

  {     
       }  

  

        
 ∑ ∑               

  
 

  
   

             (A24) 

with  

 

         (     )   

 

   ∑     
 ∑     

    
 

     
      

                . 

 

This result shows that the expected number of contacts 

obtained from the overlap of population mean density fields 

is equal to that obtained from the sum of the overlap of 

individual neuron density fields.  

 

A5.2. APPROXIMATION – UNIFORMITY IN AXONAL 
DENSITIES IN THE LOCAL ENVIRONMENT OF 
DENDRITIC VOXELS 
The distance criterion   defines a maximal range around a 

dendritic voxel within which axonal voxels may contribute 

to synaptic contacts. In a highly irregular axonal density 

field (such as those of individual neurons), all the axonal 

voxels in the local environment must be included in the 

summation of (A22). However, a simplification of (A22) can 

be obtained if it can be assumed that the axon densities     

in voxels w in the local environment of a dendritic voxel v 

do not differ much from the axon density     in the dendritic 

voxel v itself. In that case, Eq. (A22) can be approximated 

by 

 

  {     
       }            (A25) 

 

   
  

   ∑         ∑     
               

    
 

     
 .  

 

The second summation ∑     
               

    
  runs over all 

the voxels w in the local environment of a given voxel v but 

does not depend on the position of voxel v. The second 

summation thus becomes a fixed number that is only 

dependent on the size of the voxels s and the distance 

criterion  . It denotes the sum of unweighted conditional 

crossing probabilities of line pieces in a central voxel v and 

all the voxels w in the local environment of v that contribute 

to the sum, given the distance criterion  . We will call this 

factor the local environment crossing factor          : 

 

            ∑     
     (      |

    
    .   (A26) 

 

Now we obtain from Eq. (A25) 

 

 {    
       }  

  

             ∑        
     
 . (A27) 

 

Thus the expected number of crossing line pieces between 

two density fields for a given value of the distance criterion 

  is now approximated by the overlap sum of both fields 

∑        
     
  (i.e., the sum of the density products per 

voxel over all voxels in the overlap area of space) multiplied 

with the coefficient 
  

            . If we denote the term 

∑        
     
  in (A27) as the overlap sum     of two 

overlapping density fields and the term 
  

             as 

the overlap sum coefficient       , we obtain from Eq. (A27)  

 

    {    
       }               (A28) 

with  

         
  

                  (A29) 

and 

       ∑        
     
  .     (A30) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TABLE A1 | Local environment crossing factor           (sum of unweighted crossing probabilities of random line pieces in a 

central unit voxel and in all the unit voxels in a block of size s), with application of a distance criterion for the crossing distance 
between crossing line pieces. The bold values indicate the minimal block size needed for a given criterion value. 
 

   
Local environment crossing factor           

s # voxels       

1 1 0,3135 0,3087 0,3128 0,3131 0,3129 0,3129 0,314 

3 27 1,2469 0,6971 1,1974 1,2476 1,2465 1,2477 1,2462 

5 125 2,1121 0,6971 1,3961 1,9694 2,1083 2,1146 2,1113 

7 343 2,9697 0,6971 1,3961 2,0977 2,6992 2,9445 2,9688 

9 729 3,8262 0,6971 1,3961 2,0977 2,7927 3,4183 3,7384 

11 1331 4,6800 0,6971 1,3961 2,0977 2,7927 3,4920 4,1272 

13 2197 5,5348 0,6971 1,3961 2,0977 2,7927 3,4920 4,1881 
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A5.2.1. Local environment crossing factor           - sum 
of unweighted conditional crossing probabilities in the 
local environment of a given voxel v 
For the local environment of a given voxel v, we will use a 

unit grid and take a cubic block of unit voxels of size sb such 

that the maximal distance between the central voxel and a 

peripheral voxel is at least equal to    , as discussed 

following Eq. (A19). The size of the block should therefore 

be at least equal to     . The unweighted sum of crossing 

probabilities (local environment crossing factor          ) 

is now obtained by summing the crossing probabilities for 

the central voxel paired with all the voxels in the block 

(A25). For results see Table A1. An illustration is given in 

Fig. A9, showing for a voxel block of size sb=7 all the voxels 

and random lines in each of them. The central voxel is 

highlighted in red. The results are shown in Fig. A10A. For 

each value of the criterion  , the curves show initially an 

increase with increasing values of the block size, but they 

become constant when the block size is equal to or larger 

than      . For the unconditional case     (when no 

distance criterion is imposed), the sum (i.e., the number of 

expected crossings) increases linearly with the size of the 

block for not too small block sizes. 

 
A5.2.2. Local environment crossing factor           - local 
environment as a single cube of size equal to a block of 
voxels 
In the previous section A5.2.1, the local environment 

crossing factor           (sum of unweighted crossing 

probabilities) was taken over the local environment venv of a 

unit voxel v, in the form of a block of unit voxels of size 

     and centered at voxel v. When the axonal density 

field in the local environment of a dendritic voxel has a 

uniform density, then the axonal voxels in the local 

environment should be replaceable by a single axonal cube 

of the same size. Also the sum of crossing probabilities of 

random line pieces in the dendritic voxel and in all the local 

axonal voxels should be equal to the crossing probability of 

a random line piece in the dendritic voxel and a random line 

piece in the axonal cube. This consistency will be shown in 

the next two sections, the first one (A5.2.3) for the 

unconditional case (=) and the second one (A5.2.4) for 

the conditional case (=finite).   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
A5.2.3. Unconditional unweighted crossing probabilities of 
random line pieces in centered cubes of arbitrary size 
To generalize the question, we will take two centered cubes 

of different sizes and determine whether random line pieces 

in both cubes are crossing. For example, Fig. A4B shows 

two centered cubes: a unit cube v and a larger cube b. A 

random line piece is drawn in both cubes. The probability of 

crossing was determined by taking a large number of line 

piece pairs (n=1000000) and counting the number of 

crossing line piece pairs. The crossing probabilities were 

obtained for different sizes of both cubes, i.e., for a cube c1 

with size s1 and for a number of centered cubes c2 with 

varying sizes s2. In the case of crossing line pieces, their 

crossing distance was also determined. The results are shown 

in the 3rd column of Table A2 and in Fig. A11.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

FIGURE A10 | Sum of unweighted conditional crossing probabilities of random line pieces in a central voxel and in each of the s
3
 

unit voxels in a centered block of size s. (A) Plot versus the size of the centered block sb. The curves labeled with a positive value of 
   indicate the summed unweighted conditional crossing probabilities. (B) Plot versus the distance criterion  ; the curves are 
labeled by the size of the block sb. For each value of the distance criterion, the local environment factor has a maximum value, 
provided that the block size is of sufficient size. A linear fit through these maxima is drawn as a continuous line.  

 

 
 

FIGURE A9 | A block of voxels of size sb=7 with the central 
voxel highlighted in red. Each voxel contains a random line 
piece. Each of these random line pieces is tested for crossing 
with a (new) random line piece in the central voxel.   
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FIGURE A11 | Unconditional crossing probabilities of random line pieces in centered cubes of different size. (A) Octant data 

points show the crossing probability of random line pieces in cubes of size s1=1 m and of sizes s2=0.2 - 13 m, respectively. Triangle 
data points show the crossing probabilities, normalized for the size of s2. The continuous lines through the data points for s2>2 show 
the best fitting power function of the crossing probability data (red curve) and the best fitting linear function of the normalized data 
(blue curve). (B) Mean crossing distance between crossing line pieces. The continuous line through the data points for s2>2 
represents the best fitting linear function (red curve). (C) Octant data points show the crossing probability of random line pieces in 

cubes of size s1=1m and of sizes s2=0.1-2 m, respectively; triangle data points show the crossing probabilities, normalized for the 
size of s2. (D) Mean crossing distance between crossing line pieces. (E) and (F) are similar to (C) and (D) but with a size for cube 1 of 

s1=0.6 m. The continuous lines through the data points in panels (C)-(F) are linear interpolations between successive data points. 

 

TABLE A2 | Unconditional crossing probabilities of random line pieces in centered cubes of different size (n=1000000). (1st 
column) Size cube 1; (2nd column) Size cube 2; (3rd column) Unconditional crossing probabilities; (4th column) Same values as in 
3rd column but normalized for the density of line pieces; (5th column) Sum of crossing probabilities of random line pieces in a 
central voxel and in all the voxels in a block (cube2); (6th column) Difference between the values of the 4th and the 5th column. 
 

size cube1 size cube2 
pcross voxel 

block 
pcross voxel block 

normalized 
sum pcross block difference 

1 1 0,3124 0,3124 0,3135 -0,0011 

1 3 0,1386 1,2472 1,2469 0,0003 

1 5 0,0845 2,1119 2,1121 -0,0002 

1 7 0,0603 2,9565 2,9697 -0,0132 

1 9 0,0474 3,8418 3,8262 0,0157 

1 11 0,0386 4,6702 4,6800 -0,0098 

1 13 0,0330 5,5699 5,5348 0,0351 
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Figs. A11A, C, and E show that the crossing probability 

reaches the maximum value of 0.3133 when both cubes are 

of equal size (s2=s1) (Eq. A4): 

 

        
                    . 

  

For       the crossing probability sharply declines, while 

for       the crossing probability gradually declines. For 

     , this dependency could well be fitted with a power 

law function  

 

         
                       (A31) 

 

                                   .   

 

These results should now be compared with the summed 

crossing probabilities of line pieces from the central voxel 

and each of the voxels in the larger cube. These values were 

already calculated in the 3rd column of Table A1, for which 

no distance criterion was applied (=). These values are 

included in the 5th column of Table A2. For a proper 

comparison between the values in the 3rd and the 5th 

column of Table A2, a normalization is needed.  

For the voxel-block calculations, single random line pieces 

are obtained in both centered cubes. A single random line in 

a cube represents a mass density equal to its length divided 

by the volume of the cube (Eq. A8). The mean length of a 

random line in a cube scales linearly with the size of the 

cube       ̅̅ ̅̅ ̅̅ ̅̅       (Eq. A4), while the volume of a cube 

scales as          
 . The mass density in the cubes thus 

scales as            ̅̅ ̅̅ ̅̅ ̅      ⁄     
 ⁄ . For a valid 

comparison between the different sizes of the 2nd cube, we 

thus need to normalize for equal mass densities by 

multiplying the crossing probabilities with s
2
. These 

normalized crossing probabilities, (Fig. A11A, triangle data 

points) appear to scale quite linearly with the size s2 of cube 

2 for s2 values larger than about 2s1; for this range the 

triangle data points could well be fitted with a linear function 

 

        
                             

 

                       .   (A32) 

  

For single random lines, this means that the gradual decline 

of the crossing probability with increasing size of cube 2 is 

fully attributable to the decrease in mass density. The 

normalized values are also shown in the 4th column of Table 

A2. Now a comparison can be made between the voxel-

block approach and the voxel-voxel sum approach. The 

differences between both, shown in the 6th column of Table 

A2, are very small, down to the precision of the calculations. 

Thus it can be concluded that both approaches give 

consistent results.  

 
A5.2.4. Conditional weighted crossing probabilities of 
random line pieces in a central voxel and a centered cube   
As we did for Eq. (A20), we may write the expected number 

of synaptic contacts    
       of a dendritic line piece in a 

unit voxel v with axonal line pieces in the centered cube c 

for a given distance criterion  , as the product  

 

      
          

               
       

       (A33) 

 

with    
      the conditional crossing probability of random 

line pieces in voxel v and cube c of sufficient size sc,    
    the 

probability that the central unit voxel v contains a dendritic 

line piece, and    
    the probablity that the centered cube c 

contains an axonal line piece. As in Eq. (A10), the hit 

probabilities    
    and    

    directly relate to the mass 

densities in the central unit voxel and the cube, respectively: 

 

    
    

  
     

 
     and       

(A34) 

     
    

      

                  
 

  
     

    
  

  
     

 
 ,   

 

assuming a uniform axon density     in the cube, which is 

thus equal to axon density in the central voxel v (       ). 

Insertion in Eq. (A33) now gives for the expected number of 

contacts  

 

    
          

            
  
    

 

            .  (A35) 

   

The conditional crossing probabilities    
            were 

obtained by simulating 1.000.000 pairs of random line pieces 

in the central voxel and in the centered cube, with results 

shown in Fig. A12 and listed in Table A3. For example, for a 

distance criterion of =4, and a cube size of sc= 9 (=2+1), 

i.e., containing all the voxels that may contribute to 

connectivity with the central voxel, we obtained 

 

     
                              (A36)  

 

and for the expected number of synaptic contacts with 

dendritic voxel v  

  

    
         

         

                  

   

                      .  (A37) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TABLE A3 | Conditional crossing probabilities between a 
random line piece in a central voxel and a random line piece 
in a centered cube 
 

Distance 

criterion  
Cube size sc 

Conditional crossing 
probability 

1 3 0,0775 

2 5 0,0556 

3 7 0,0428 

4 9 0,0345 

5 11 0,0288 

6 13 0,0247 
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The coefficient in Eq. (A37) is equal to the overlap sum 

coefficient       in Table A4 for    ; this also shows that 

the voxel-cube approach gives the same result as the sum of 

voxels in the block approach, under the assumption of a 

uniform axon density in the neighborhood of a dendritic 

voxel.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
A5.2.5. Overlap sum coefficient       and closed expression 

of  {    
       } 

With the values for the local environment factor           
(for s=1), the overlap sum coefficient       can now be 

calculated explicitly using Eq. (A29) with the results given 

in Table A4. In Fig. A10B the local environment factor is 

plotted versus the distance criterion  . For each value of  , 

the local environment crossing factor has a maximum value, 

provided that the block size is of sufficient size. A linear fit 

through these maxima is drawn as a continuous line: 

 

                                   (A38) 

 

with     used here as a dimensionless variable. When an 

accuracy of at least 0.2 promille is sufficient, we may 

disregard the constant, so that the overlap sum coefficient 

      can then be approximated by  

 

       
  

                            (A39) 

 

and the expected number of crossing line pieces in the 

overlap area is equal to  

 

  {    
       }                   .   (A40) 

 

A5.3. CROSSING DISTANCES BETWEEN CROSSING 
LINE PIECE PAIRS IN CENTERED CUBES OF DIFFERENT 
SIZE 
In the case of a crossing line piece pair, the crossing distance 

was also determined. The mean crossing distance between 

crossing line pieces for s1=1 m and different sizes s2 of the 

2nd cube appeared to scale linearly with s2 for s2>2 (Fig. 

A11B): 

  

                 (Eq. A11) 

(A41) 

                            .  

 

Both the crossing probability and the mean crossing distance 

for s2=1 do not follow the scale behavior that is shown for 

s2>1. To investigate this behavior in more detail, we 

performed similar calculations for sizes of cube s2 between 

0.1 and 2 (Fig. A11D) and for a smaller size of cube s1 (0.6) 

(Fig. A11F). 

As in Fig. A11A, also the data curves for the 

unnormalized crossing probabilities (i.e. of single line piece 

pairs) in Figs. A11C,E show the same maximum value of 

pcross=0.3133 when both cubes are of the same size. This is 

in agreement with the finding in Eq. (A12) that the crossing 

probability of line pieces within the same cube has a 

constant value of 0.3133, independent of the size of the cube. 

When the centered cubes are of different size, the line pieces 

 

 
 
FIGURE A12 | (A) Octagon data points: unconditional (   ) and conditional (finite ) crossing probabilities between random lines 

in a central voxel and in a centered block versus the size of the block (m). The curves are labeled with the distance criterion  . 
Triangle data points: conditional crossing probabilities scaled for the size of the 2nd cube, as shown for       . This criterion 

value requires a block size of at least s=13 m for collecting all possible contributions of crossing line pieces. (B) Conditional mean 
crossing distance between crossing line pieces in a central voxel and a centered block versus the size of the block. The curves are 
labeled with the distance criterion  . 

 

TABLE A4 | Overlap sum coefficient of two overlapping 
density fields 

 

Distance 
criterion 


            

Local environment factor Overlap sum 
coefficient       

1 0.6971 1.569 

2 1.396 3.142 

3 2.098 4.723 

4 2.793 6.287 

5 3.492 7.860 

6 4.188 9,427 
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in a pair will on average be at a larger crossing distance from 

each other compared with line pieces within the same 

smaller cube. Thus, the crossing probability of random line 

pieces in centered cubes of different size will be smaller than 

the crossing probability of random line pieces in the same 

cube. The crossing distance curves (Figs A11B,D,F) also 

show a rather linear pattern when the 2nd cube becomes 

smaller than the 1st cube. The crossing distance stabilizes 

towards a value of about 0.31 when the 1st cube has size 

s1=1m, and towards a value of about 0.186 when the 1st 

cube has a size of s1=0.6 m. This can be understood by 

considering that a small 2nd cube is in the center of the 1st 

cube, and constrains one end of the orthogonal connection 

line between both line pieces to this small volume. The other 

end can be at any point within the larger cube. The length of 

the orthogonal connection line appeared to depend linearly 

on the size of the larger cube:  

 

                            .    (A42) 

 

Note that if one of the cubes becomes very small, also the 

crossing probability becomes very small. 

  

Generalization 

The crossing probability of two random lines within a cube 

appeared to be independent of the size of the cube, see Eq. 

(A12): 

 

       
                   ,  and    

 (A43) 

       
                     

              

 

for any value of the constant a. 

 

A6. INVARIANCE OF THE SCALE OF THE GRID FOR 
THE CALCULATION OF CROSSING PROBABILITIES 
The scale of the grid, i.e., the size of the voxels, should be a 

free parameter in the discretization of space. However, the 

use of the distance criteron   may set conditions on the 

choice of the grid size. The grid size is important for the 

spatial resolution of the density fields. Particularly in the 

case of density fields of individual neurons it sets a lower 

limit on the fine structure of individual branches. The 

procedure for calculating the crossing probabilities between 

random lines in different voxels is invariant to the scale of 

the grid, which can be proven as follows.  

Given, a cube of arbitrary size sc that is intersected by a 

random line from field A and a random line from field B. 

These random line pieces inside the cube will cross each 

other with a probability of (Eq. A12) 

 

               , 

 

which is independent of the size sc of the cube. These 

random line pieces have a mean length of      with 

          (Eq. A4) which corresponds to a mass mcA and 

mcB with 

 

           and           . 

 

Assuming uniformly distributed masses over the cube these 

two line pieces determine densities of (Eq. A8) 

 

     
  

  
  

 

  
   and     

 

  
  , respectively. 

 

Crossing of random line pieces in all pairs of voxels in a 

block of unit voxels - When the cube is superposed by the 

unit grid with unit voxels (    ), random line pieces can 

be obtained in any voxel, given these field densities, with hit 

probabilities given by (Eq. A10) 

 

     
          

  ⁄   
and             (A44) 

     
          

  ⁄  .   

 

A random line piece in voxel v and in voxel w will cross 

each other with a probability of     
     (      ) , which is 

dependent on the distance dv,w between both voxels and the 

criterion value   (Figs. A6 and A8). Summing these crossing 

probabilities of line pieces for all the voxel pairs in the cube 

gives an unweighted expected number of crossing line piece 

pairs 

 

     {    
             }   ∑  ∑      

     (      )    
 

    
 .  

             (A45) 

 

The results of these unweighted expected number of 

crossings are shown in Table A5 for different cube sizes and 

criterion values.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Taking the hit probabilities into account gives the weighted 

expected number of crossing line piece pairs  

 

   {    
             }           (A46) 

 

    ∑   ∑    
       

        
     (      )    

 
    
 . 

 

Because the masses of both fields in the cube are distributed 

uniformly over all the voxels the voxel hit probabilities are 

equal for all the voxels. The quantity    
       

    can thus be 

put before the summation in Eq. (A46) with  

 

 

 TABLE A5 | Unweighted expected number of crossing line 
pieces in all voxel pairs in a cube 
 

n=1000   

cube 
size sc 

              1         2         3         4 

1 0,313 0,319 0,293 0,304 0,315 

2 4,969 3,761 5,076 4,945 5,003 

3 25,433 14,467 21,973 25,243 25,401 

4  80,235 36,974 60,685 73,167 78,856 
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             }  (A47) 

 

with the voxel hit probabilities    
    and    

    given by Eq. 

(A44). For instance, for a cube of size sc=3, the field 

densities become          
 ⁄       , and the hit 

probabilities    
       

          , so we obtain  

 

   {    
             }           

 

             {    
             }   

 

                                 (A48) 

 

 (see Table A6). This outcome is equal to the expected value 

of               of the two random line pieces in the 

whole cube which proves that the procedure for calculating 

the crossing probabilities between line intersections is 

invariant for the scale of the spatial grid. This conclusion 

holds also for other values of   as is shown in Table A6.  

 

A7. ESTIMATING THE CONNECTION PROBABILITY 
AND THE EXPECTED NUMBER OF CONTACTS PER 
CONNECTED NEURON PAIR FROM THE EXPECTED 
NUMBER OF SYNAPTIC CONNECTIONS  
Let area A be the overlap area of an axonal and a dendritic 

density field, containing an expected number of synaptic 

connections  {  
   

}. The connection probability   
    that 

the axonal and dendritic neuron are connected (i.e., have at 

least one synaptic contact) can be estimated theoretically 

from the expected number of synaptic connections  {  
   

} 
in the following way. Partition the overlap area A into a 

number of C small (for instance cubic) compartments. 

Distribute in an arbitrary way (say uniformly) the expected 

number of synapses  {  
   

}  over these compartments, so 

that  

  

   {  
   

}  
 

 
  {  

   
} .      (A49) 

 

Make the number of compartments so large that the expected 

number of synapses per compartment  {  
   

}  becomes 

much smaller than one. Then this value per compartment can 

be interpreted as the probability   
   

 of finding a synapse in 

that compartment. The probability   
     

 of not finding a 

synapse in that compartment is then given by   
     

   
   

   
. The product of the no-synapse probabilities of all 

compartments in area A, assuming independency, then yields 

the probability of no-synapse in the overlap space,   
     

 

∏ (      

   
) 

 . The connection probability   
   , i.e., the 

probability of at least one contact in the overlap space, is 

then given by   
        

     
.  

 The expected number of contacts per connected neuron 

pair  { } is given by the ratio of the expected number of 

contacts in the overlap area divided by the connection 

probability, 

 

   { }   {  
   

}   
   ⁄  .       (A50) 

 

This relation can be derived as follows: Let      denotes the 

number of neuron pairs connected with i contacts. The total 

number of pairs is then given by   ∑     
    
   , while 

     
    

 
 denotes the probability that a given neuron pair 

has i contacts. The expected number of contacts in an 

arbitrary neuron pair is given by  { }  
 

 
∑       

    
    

∑       
    
   . The connection probability is given by 

     
 

 
∑     

    
    

      

 
. The expected number of 

contacts per connected neuron pair becomes  { }  

∑       
    
   ∑     

    
   ⁄  ∑       

    
          ⁄  

 
   { }

      
 

 { }

    , which proves Eq. (A50).  

 

TABLE A6 | Crossing probabilities of random line intersections of two fields A and B of a cube of size sc=3 for all the 27
2
 = 729 unit 

voxel pairs in the cube. (1st column) Distance criterion; (2nd column) Unweighted crossing probabilities of two random line 
intersections in the cube; (3rd column) Densities of field A and field B are taken so that the hit probability for the cube is equal to 
one; (4th column) Weighted crossing probabilities; (5th column) Sum of unweighted crossing probabilities of random line pieces in 
all voxel pairs in the cube; (6th column) Voxel hit probabilities for the given field densities; (7th column) Weighted sum of voxel-voxel 
crossing probabilities. 
 

scube=3     ncnt=100000 

  p
cross

 cube p
hit

 cube p
cross

 cube hit 
sum p

cross
 vox-

vox 
p

hit
 voxel 

sum p
cross

 vox-
vox hit 

   0,3138 1 0,3138 25,3566 0,1111 0,3130 

 1 0,1806 1 0,1806 14,5558 0,1111 0,1797 

 2 0,2742 1 0,2742 22,2021 0,1111 0,2741 

 3 0,3099 1 0,3099 25,0197 0,1111 0,3089 

 4 0,3132 1 0,3132 25,3370 0,1111 0,3128 
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Fig. A13 shows how the connection probability and the 

expected number of contacts per connection depend on the 

expected number of contacts. The procedure for estimating 

the connection probability is independent of the number of 

compartments or the way the quantity  {  } is distributed 

over the compartments, as long as the values per 

compartment remain much smaller than one, and 

independency can be assumed between the compartments. 

However, as is shown in the section ESTIMATION OF THE 
CONNECTION PROBABILITY FROM THE EXPECTED NUMBER 
OF CONTACTS of the paper, synapse locations are not 

independently distributed in space, and the empirical 

relationships between number of contacts on the one hand, 

and connection probability and number of contacts per 

connection on the other hand, are different from the curves 

in Fig. A13 (see also Figs. 6 and 8 in the paper).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 

 

 

FIGURE A13 | Connection probability and expected number 
of contacts per connected neuron pair derived from the 
Expected number of contacts. 


