SUPPLEMENTARY MATERIAL FOR

Breeding Phenology of Red-shouldered Hawks (*Buteo lineatus*) is Related to Snow Cover and Air Temperature During the Pre-laying Period

Cheryl R. Dykstra¹*, Jeffrey L. Hays², Melinda M. Simon², and Ann R. Wegman³

¹Raptor Environmental, West Chester, Ohio, USA
²RAPTOR, Inc., Milford, Ohio, USA
³Cincinnati Museum Center, Cincinnati, Ohio, USA

Table S1. Hatching date analyses for some diurnal and nocturnal raptors. Phenology change is shown as described by the authors. Diet is shown if reported by the authors or by another researcher in the same study area (one case; see footnotes). Hatching date was typically calculated from the age of the nestlings at banding/ringing; in most cases laying date was back-calculated from hatching date.

Species	Location	Habitat	Years	Response	Phenology	Diet (as reported	Source	Comments
				Variable	Change	by authors)		
Black Kite	Northern Italy	Lake district	1992-	Laying date ^a	Advanced 10-	Fish	Sergio, 2003	Mean spring temperature
(Milvus		of the Italian	2002		11 d			also increased.
migrans)		pre-Alps						
American	Southwestern	Agriculture	1992 to	Nest discovery	Advanced 15 d	Small mammals	Smith et al., 2017	Warmer winters, but not
Kestrel (Falco	Idaho, USA	and	2015	date		(29% by number;		springs, caused farmers
sparverius)		sagebrush				80% by biomass)		to plant earlier, which
						and insects (64%,		influenced kestrel nest-
						13%)		initiation dates.
American	Southwestern	Agriculture,	1986-	Hatching date	Hatching date	Voles ("main	Steenhof and	Winter air temperature
Kestrel ^b	Idaho, USA	rangeland,	2006;	and nest	advanced 21 d.	vertebrate prey")	Peterson, 2009;	also increased; kestrels
		and exurban	1987-	initiation date;	Nest initiation		Heath et al., 2012	tended to nest earlier
			2009	nest discovery	date advanced			after warm winters.
				date	23 d; Advanced			
					significantly			
Gyrfalcon	Greenland	High Arctic,	1994-	Hatching date	Advanced 6 d	Birds	Burnham and	
(Falco		coastal	2010				Burnham, 2011	
rusticolus)								
Peregrine	Mackenzie	Arctic	1985-	Hatching date	Advanced 1.5-	Birds ^c	Carrière and	
Falcon (Falco	River, Canada		2010		3.6 d/decade		Matthews, 2013	
peregrinus)								

Peregrine Falcon	South Greenland	Arctic	1981- 2017	Hatching date	Advanced 0.9 d/ decade	d	Falk and Møller, pers. comm. reported in Franke et al., 2020	
Peregrine Falcon	Northern Spain	Temperate forest, urban, industry, and agriculture	1998- 2017	Incubation onset	Delayed slightly in last decade	d	Zuberogoitia et al., 2018	Rainy February weather also associated with delayed incubation onset.
Cooper's Hawk (Accipiter cooperii)	Wisconsin, USA	Forest	1980- 2015	Hatching date	Advanced 4-5 d	Primarily birds	Rosenfield et al., 2017	
Eurasian Sparrowhawk (Accipiter nisus)	Finland		1973- 2007	Hatching date	Advanced $0.18 \pm 0.05 \text{ d/yr}$	Passerines ^e	Lehikoinen et al., 2010	Temperature during April (laying period) also inversely related to hatching date.
Eurasian sparrowhawk	Denmark	Farmland with scattered forest	1977- 1997	Laying date ^a	No trend	Birds	Nielsen and Møller, 2006	
Eurasian Sparrowhawk	Hoge Veluwe, The Netherlands	Mixed forest	1985- 2004	Hatching date	No trend	Mostly birds	Both et al., 2009	
Montagu's Harrier (<i>Circus</i> <i>pygargus</i>)	Southeastern Spain	Cereal crops	2003- 2014	Laying date	Advanced	f	Moreno-Rueda et al., 2019	
Common Buzzard (Buteo buteo)	Finland		1979- 2004	Hatching date	Advanced 11.4 d	Mainly voles	Lehikoinen et al., 2009	Earlier breeding in warmer springs. Air temperature increased in spring, but not summer.
Rough-legged Hawk (Buteo lagopus)	Finland and Norway	Mountainous birch forest and lowland willow/birch scrub	1985- 2005	Laying date ^a	Advanced 0.1d/yr	Mainly voles	Terraube et al., 2015	Laying date related to snow cover, but not air temperature.
Red- shouldered Hawk (Buteo lineatus)	Southern Ohio, USA	Deciduous forest; suburban	1997- 2020	Hatching date	No trend	Small mammals, amphibians, reptiles, invertebrates ^g	This study	Hatching date related to snow cover and air temperature in the pre- laying period.

Northern Saw- whet Owl	British Columbia,	Mixed conifer	1995- 2011	Laying date	No trend		Drake and Martin, 2018	Laying date also unrelated to temperature.
(Aegolius acadicus)	Canada, interior	Torests						
Tawny Owl (Strix aluco)	Southern Finland	Agriculture, silviculture, suburban and urban parks	1986- 2011	Hatching date	No trend	Typically voles	Solenen, 2014	Hatching date related to snow depth and temperature.
Tawny Owl	Latvia	Temperate deciduous forest	1991- 2008	Laying date	No trend	Mainly voles	Grandāns et al., 2009	Laying date related to snow depth and air temperature in February- March.
Tawny Ow1	Finland	Northern boreal forest	1973- 2004	Hatching date	No trend	Rodents, esp. voles	Lehikoinen et al., 2011	Hatching date related to vole numbers in previous year and March air temperature.
Ural Owl (Strix uralensis)	Finland	Northern boreal forest	1973- 2004	Hatching date	No trend	Rodents, esp. voles	Lehikoinen et al., 2011	Hatching date related to vole numbers in previous year and February air temperature and snow depth.
Pygmy Owl (Glaucidium passerinum)	Finland	Northern boreal forest	1988- 2004	Hatching date	No trend	Rodents, esp. voles	Lehikoinen et al., 2011	Hatching date unrelated to any tested variable.
Tengmalm's (Boreal) Owl (Aegolius funereus)	Finland	Northern boreal forest	1973- 2004	Hatching date	No trend	Rodents, esp. voles	Lehikoinen et al., 2011	Hatching date related to vole numbers in previous year.
Tengmalm's (Boreal) Owl	Western Finland	Boreal forest	1973- 2018	Laying date ^a	Slightly delayed	Small mammals, esp. voles	Kouba et al., 2020	Laying date related to vole numbers and January-March snow depth.
Burrowing Owl (<i>Athene</i> <i>cunicularia</i>)	Albuquerque, New Mexico, USA	Urban and grassland	2005- 2013	Hatching date	Delayed 9.4 d	Primarily small mammals and insects	Cruz-McDonnell and Wolf, 2016	Hatching date linked to drought.

a. Laying date back-calculated from hatching date, which was typically determined from the age of the nestlings.

- b. Two studies used the same dataset (extended to 2009 in Heath et al. 2012); results from the later study shown after the semicolon in each cell.
- c. Diet information for Mackenzie River territories (2000–2013) from Hodson (2019).
- d. Though Peregrine Falcon studies did not provide diet information, data from other studies in similar habitat suggest that diet likely included some birds or mostly birds (West Greenland, Rosenfield et al., 1995; Spain, López-López et al., 2009, Zabala and Zuberogoitia, 2014).
- e. Authors describe Eurasian Sarrowhawks as "highly specialized predators of passerines" (Lehikoinen et al., 2010).
- f. Though Montagu's Harrier study did not provide diet information, data from other studies in the region suggest that the species is a generalist with a diet containing birds, mammals, and insects (eastern Spain, Liminana et al., 2012; northeastern Spain, Terraube et al., 2014).
- g. From Dykstra et al. (2003).

REFERENCES

- Both, C., van Asch, M., Bijlsma, R.G., van den Burg, A.B., and Visser, M.E. (2009). Climate change and unequal phenological changes across four trophic levels: constraints or adaptations? J. Anim. Ecol. 78, 73-83.
- Burnham, K.K., and Burnham, W.A. (2011). "Ecology and biology of Gyrfalcons in Greenland" in Gyrfalcons and Ptarmigan in a Changing World, eds. R.T. Watson, T.J. Cade, M. Fuller, G. Hunt, and E. Potapov (Boise, ID: The Peregrine Fund), pp.1-19.
- Carrière, S. and Matthews, S. (2013). Peregrine Falcon surveys along the Mackenzie River, Northwest Territories, Canada. File Report No. 140. Environment and Natural Resources, Government of Northwest Territories, Canada.
- Cruz-McDonnell, K.K., and Wolf, B.O. (2016). Rapid warming and drought negatively impact population size and reproductive dynamics of an avian predator in the arid southwest. Global Change Biol. 22, 237-253.
- Drake, A., and Martin, K. (2018). Local temperatures predict breeding phenology but do not result in breeding synchrony among a community of resident cavity-nesting birds. Sci. Rep. 8:2756. DOI:10.1038/s41598-018-20977-y.
- Dykstra, C.R., Hays, J.L., Simon, M.M., and Daniel, F.B. (2003). Behavior and prey of nesting Red-shouldered Hawks in southwestern Ohio. J. Raptor Res. 37, 177-187.
- Franke, A., Falk, K., Hawkshaw, K., Ambrose, S., Anderson, D.L., Bente, P.J., et al. (2020). Status and trends of circumpolar Peregrine Falcon and Gyrfalcon populations. Ambio 49, 762-783.
- Grandāns, G., Keišs, O., and Avotiņš, A. (2009). Onset of breeding in Tawny Owl *Strix aluco* in eastern Latvia. Acta Universitatis Latviensis Biology 753, 81–87.

Heath, J.A., Steenhof, K., and Foster, M.A. (2012). Shorter migration distances associated with higher winter temperatures suggest a mechanism for advancing nesting phenology of American Kestrels *Falco sparverius*. J. Avian Biol. 43, 376-384.

Hodson, K. (2018). Mackenzie River Peregrine Falcon surveys 1966–2018. Ornis Hungarica 2018:134–142.

- Kouba, M., Bartos, L., Bartošová, J., Hongisto, K., and Korpimäki, E. (2020). Interactive influences of fluctuations of main food resources and climate change on long-term population decline of Tengmalm's Owls in the boreal forest. Sci. Rep. 10:20429. https://doi.org/10.1038/s41598-020-77531-y.
- Lehikoinen, A., Byholm, P., Ranta, E., Saurola, P., Valkama, J., Korpimäki, E., et al. (2009). Reproduction of the Common Buzzard at its northern range margin under climate change. Oikos 118, 829-836.
- Lehikoinen, A., Ranta, E., Pietiäinen, H., Byholm, P., Saurola, P., Valkama, J., et al. (2011). The impact of climate and cyclic food abundance on the timing and brood size in four boreal owl species. Oecologia 165, 349-355.
- Lehikoinen, A., Saurola, P., Byholm, P., Lindén, A., and Valkama, J. (2010). Life history events of the Eurasian Sparrowhawk *Accipiter nisus* in a changing climate. J. Avian Biol. 41:627-636.
- Liminana, R., Javaloves, T., and Urios, V. (2012). Diet of the Montagu's Harrier *Circus pygargus* in natural habitat in eastern Spain. Ornis Fennica 89, 74-80.
- López-López, P., Verdejo, J., and Barba, E. (2009). The role of pigeon consumption in the population dynamics and breeding performance of a Peregrine Falcon (*Falco peregrinus*) population: conservation implications. Eur. J. Wildl. Res. 55, 125–132.
- Moreno-Rueda, G., Lopezosa, P., and Rivas, J.M. (2019). Breeding biology of Montagu's Harrier *Circus pygargus* in southeastern Spain. Ardeola 66, 3-11.
- Nielsen, J.T., and Møller, A.P. (2006). Effects of food abundance, density and climate change on reproduction in the sparrowhawk *Accipiter nisus*. Oecologia 149, 505-518.
- Rosenfield, R.N., Hardin, M.G., Bielefeldt, J., and Keyel, E.R. (2017). Are life history events of a northern breeding population of Cooper's Hawks influenced by changing climate? Ecol. Evol. 7, 399-408.
- Rosenfield, R.N., Schneider, J.W., Papp, J.M., and W.S. Seegar (1995). Prey of Peregrine Falcons breeding in West Greenland. Condor 97, 763-770.
- Sergio, F. (2003). Relationship between laying dates of Black Kites *Milvus migrans* and spring temperatures in Italy: rapid response to climate change? J. Avian Biol. 34, 144-149.
- Smith, S.H., Steenhof, K., McClure, C.J.W., and Heath, J.A. (2017). Earlier nesting by generalist predatory bird is associated with human responses to climate change. J. Anim. Ecol. 86, 98-107.
- Solenen, T. (2014). Timing of breeding in rural and urban Tawny Owls *Strix aluco* in southern Finland: effects of vole abundance and winter weather. J. Ornithol. 155, 27-36.
- Steenhof, K., and Peterson, B.E. (2009). American Kestrel reproduction in southwestern Idaho: annual variation and long-term trends. J. Raptor Res. 43, 283-290.

- Terraube, J., Guixé, D., and Arroyo, B. (2014). Diet composition and foraging success in generalist predators: are specialist individuals better foragers? Basic Appl. Ecol. 15, 616–624.
- Terraube, J., Villers, A., Ruffino, L., Iso-Iivari, L., Henttonen, H., Oksanen, T., et al. (2015). Coping with fast climate change in northern ecosystems: mechanisms underlying the population-level response of a specialist avian predator. Ecography 38, 690–699.
- Walls, S., and Kenward, R. (2020). The Common Buzzard. London, UK: T. and A.D. Poyser and Bloomsbury Publishing Plc.
- Zabala, J., and Zuberogoitia, I. (2014). Individual quality explains variation in reproductive success better than territory quality in a long-lived territorial raptor. PLoS ONE 9(3): e90254. doi:10.1371/journal.pone.0090254.
- Zuberogoitia, I., Morant, J., Castillo, I., Martínez, J.E., Burgos, G., Zuberogoitia, J., et al. (2018). Population trends of Peregrine Falcon in northern Spain Results of a long-term monitoring project. Ornis Hungarica 26, 51-68.