
Appendices: CutLang v2: Advances in a runtime-interpreted

analysis description language for HEP data

G. Unel1, S. Sekmen2, A. M. Toon3, B. Gokturk4, B. Orgen4, A. Paul5, N. Ravel6, and J.
Setpal7

1University of California at Irvine, Department of Physics and Astronomy, Irvine, USA
2Kyungpook National University, Department of Physics, Daegu, South Korea

3Saint Joseph University of Beirut, Dept. of Computer Software Engineering, Beirut,
Lebanon

4Bogazici University, Department of Physics, Istanbul, Turkey
5The Abdus Salam International Centre for Theoretical Physics, Trieste, Italy
6University of Ankatso, Department of Physics, Antananarivo, Madagascar

7R.N. Podar School, Mumbai, India

May 31, 2021

Contents

A User Manual 2
A.1 Blocks and keywords . 2
A.2 Predefined physics objects . 2
A.3 Predefined functions . 3

A.3.1 PDGID of particles . 5
A.4 Mathematical operators and functions . 5
A.5 Comparison, range and logical operators . 6

A.5.1 Logical operations . 6
A.5.2 Ternary operator . 6

A.6 χ2 minimization . 6
A.7 Definitions . 7
A.8 Tables . 7
A.9 Manipulating objects . 8

A.9.1 Defining new objects . 8
A.9.2 Sorting objects . 8
A.9.3 Object combinatorics . 8
A.9.4 Looping over a subset of the object collection . 9
A.9.5 Minimum and maximum of object attributes . 10
A.9.6 Summing object attributes . 10
A.9.7 Object constituents . 10
A.9.8 Daughter particles . 10
A.9.9 Hit and miss method . 10

A.10 Manipulating Events . 11
A.10.1 Selecting or rejecting events . 11
A.10.2 Weighing events . 11
A.10.3 Saving events . 11

A.11 Bins, counts and histograms . 11
A.11.1 Bins . 11
A.11.2 Counts . 12
A.11.3 Histograms . 12

A.12 Structure of a complete ADL file . 13

1

A.12.1 Initialization and information section . 13
A.12.2 Regions and algorithms . 13

B The CutLang framework 14
B.1 installation and compilation . 14
B.2 External user functions . 14
B.3 Incorporation of new input file types . 15

A User Manual

All information about ADL and CutLang including publications, talks and twikis with syntax rules can be
accessed through the following portal

https://cern.ch/adl

The code for CutLang is hosted in the GitHub repository

https://github.com/unelg/CutLang

which provides up-to-date instructions on how to install, compile and run CutLang .

A.1 Blocks and keywords

An ADL file consists of blocks based on a keyword value/expression structure. The blocks allow a clear
separation of analysis components. A typical block looks as follows:

blockkeyword blockname

general comment

keyword1 expression1

keyword2 expression1

keyword3 expression1 # comment about value3

Table 2 lists the available blocks, their purposes and associated keywords, and Table 1 lists the keywords.
The details on their applications are given in the following sections.

Table 1: Blocks in ADL and CutLang
Block Purpose Related key-

words

object / obj Object definition block. Produces an object type from an input
object type by applying selections.

take, select, re-
ject

region / algo Event categorization. select, reject,
weight, bin,
sort, counts,
histo, save

info Contains analysis information such as the experiment, center-of-
mass energy, luminosity, publication details, etc.

table Generic block for tabular information, such as efficiency values
versus variable ranges

tabletype, nvars,
errors

countformat Expresses the processes for which external counts are included and
the format of counts

process

A.2 Predefined physics objects

Basic physics objects and their properties currently available in CutLang are defined in Table 3. The predefined
particles are initially sorted per decreasing transverse momentum and their indices start at zero. With the
current implementation, all the predefined particle names, and commonly used function names have become
case-insensitive. For the particle, both Python-type and LATEX-type notations are accepted; the former with
square brackets, and the latter with an underline character. An example for electrons is given below:

2

https://cern.ch/adl
https://github.com/unelg/CutLang

Table 2: Keywords in ADL and CutLang
Keyword Purpose Related block

define Define variables, constants –
select Select objects or events based on criteria that follow the keyword. object, region
reject Reject objects or events based on criteria that follow the keyword. object, region
take / using / : Define the mother object type object
sort Sort an object in an ascending or descending order wrt a property. region
weight Weight events region
histo Fill histograms region
process Specify process and the format for which external counts are given countformat
counts Give external counts region
tabletype Specifies type of the table table
nvars Number of variables in a table table
errors Type of errors indicated in a table table
title, experiment, id,
publication, sqrtS,
lumi, arXiv, hepdata,
doi

Provide information about the analysis (see Table 12) info

Ele_0 = ELE_0 = Ele[0] = ele[0] = electron_0 = electron[0] .

Sometimes it is necessary to refer to the whole object set or just to some of its members. The CutLang
notation for these cases is to write the name of the set without any indices for the former (i.e. ELE) and to
use the semi-colon notation for the latter (i.e. ELE[0:2] = ELE 0:2) .

In CutLang , there are two object-types that merit special attention: the lepton and the neutrino types.
The LEP keyword refers to a generic lepton and at runtime it is reduced to an electron or to a muon depending
on the choice as explained in Table ??. This helps the physicist avoiding two algorithm sections, one for
electron and other muon based analyses. The second object-type is related to the taming of the neutrino
escaping from the detector. At LHC energies and beyond, for which CutLang is intended, the W bosons are
generally produced with a sufficient boost such that in the leptonic decays, the pseudorapidity of the charged
lepton is not very different from the chargeless one. Therefore this particular physics object benefits from this
approximation to define a massless and chargeless particle with transverse momentum and azimuthal angle
(φ) values extracted from the missing transverse energy (MET) measurements. The pseudorapidity, however,
is taken equal to that of the charged lepton with the same particle index.

Table 3: Basic physics object nomenclature in CutLang
Name Keyword First object Second object j + 1th object

Electron ELE ELE[0] ELE 0 ELE[1] ELE 1 ELE j

Muon MUO MUO[0] MUO 0 MUO[1] MUO 1 MUO j

Tau TAU TAU[0] TAU 0 TAU[1] TAU 1 TAU j

Lepton LEP LEP[0] LEP 0 LEP[1] LEP 1 LEP j

Photon PHO PHO[0] PHO 0 PHO[1] PHO 1 PHO j

Jet JET JET[0] JET 0 JET[1] JET 1 JET j

Fat Jet FJET FJET[0] FJET 0 FJET[1] FJET 1 FJET j

b-tagged Jet BJET BJET[0] BJET 0 BJET[1] BJET 1 BJET j

light Jet QGJET QGJET[0] QGJET 0 QGJET[1] QGJET 1 QGJET j

Neutrino NUMET NUMET[0] NUMET 0 NUMET[1] NUMET 1 NUMET j

MET METLV METLV[0] METLV 0 — — —
generator particle GEN GEN[0] GEN 0 GEN[1] GEN 1 GEN j

A.3 Predefined functions

Functions in CutLang can be used for accessing object attributes, or for computing new variables from object
or event quantities. Functions for accessing object attributes can be directly related to Lorentz vectors such
as mass, momentum, rapidity etc, or be related to other variables found in some commonly used ntuples. In

3

both cases, both the function syntax with parentheses and the attribute syntax with curly braces can be used.
Functions used for computing new quantities can use object attributes or other already calculated quantities
or constants. The currently available object attribute functions in CutLang are listed in Table 4. Note that
some of the attributes listed here are only valid for certain input types, e.g. for CMS NanoAOD, but not for
others, e.g. for Delphes. The functions used for computing new quantities are listed in Table 5.

One should note that in CutLang adding particles could be achieved by either writing these one after the
other separated by space(s), or by using a + sign. Both notations are equally valid. Additionally, one should
use a comma as the separation character for the functions requiring multiple arguments.

The internal functions, such as angular distance or transverse momentum are also case-insensitive in Cut-
Lang , though they are written in this manuscript with a certain syntax (first letter upper case) for clarity
in reading. The functions requiring multiple arguments should use comma character for argument separation.
External functions can also be downloaded and added to CutLang library. The instructions for this operation
is described in appendix B.

Table 4: Functions and syntax for object attributes in CutLang .
Meaning Syntax 1 Syntax 2

Lorentz vector-related attributes
Mass of m() { }m

Charge of q() { }q
Phi of Phi() { }Phi
Eta of Eta() { }Eta

Absolute value of Eta of AbsEta() { }AbsEta
Rapidity of Rep() { }Rep

Pt of Pt() { }Pt
Pz of Pz() { }Pz

Energy of E() { }E
Momentum of P() { }P

Other attributes
PDGID of a particle PDGID() { }PDGID
Charge of a particle btagDeepB() { }btagDeepB
is the jet b tagged? bTag() { }bTag

Soft Drop mass of a jet msoftdrop() { }msoftdrop
N-subjetiness variable 1 tau1() { }tau1
N-subjetiness variable 2 tau2() { }tau2
N-subjetiness variable 3 tau3() { }tau3

Leptonic diTau invariant mass fMTauTau() { }fMTauTau
transverse impact parameter dxy() { }dxy

longitudinal impact parameter dz() { }dz
lepton identification variable softId() { }softId
relative isolation for leptons miniPFRelIsoAll() { }miniPFRelIsoAll

MVA based tau ID dMVAnewDM2017v2() { }dMVAnewDM2017v2
σiηiη for photons sieie() { }sieie
isolation variable reliso() { }reliso
isolation variable relisoall() { }relisoall
isolation variable pfreliso03all() { }pfreliso03all

Tau decay mode id iddecaymode() { }iddecaymode
Tight ID and isolation flag idisotight() { }idisotight

Tight anti ele ID for taus idantieletight() { }idantieletight
Tight anti mu ID for taus idantimutight() { }idantimutight

Tight ID for muons tightid() { }tightid
PU ID for jets puid() { }puid

Index of matched genparticle to a lepton genpartidx() { }genpartidx
Tau decay mode decaymode() { }decaymode

Tau isolation tauiso() { }tauiso
Muon soft ID softId() { }softId

4

Table 5: Functions and syntax for computing new quantities in CutLang .
Meaning Syntax 1 Syntax 2

Angular distance between dR() { }dR
Phi difference between dPhi() { }dPhi
Eta difference between dEta() { }dEta

Missing transverse energy in the event MET –
sum of jet transverse momenta HT() –

partitioning objects into 2 megajets fmegajets() { }fmegajets
Razor variable MR fMR() { }fMR

Razor variable MTR fMTR() { }fMTR
partitioning objects into 2 hemispheres fhemisphere() { }fhemisphere

transverse mass MT2 fMT2() { }fMT2

A.3.1 PDGID of particles

Each type of particle recognized in particle physics is assigned a unique code by the Particle Data Group (PDG)
in order to facilitate interface between event generators, detector simulators, and analysis packages. These
codes are known as PDGID (or PDG ID), and this method is called the MC particle numbering scheme [1].
The numbering includes elementary particles such as, electrons, neutrinos, Z bosons etc, composite particles
(mesons, baryons etc) and atomic nuclei. Hypothetical particles beyond the Standard Model also have PDGIDs.
Particles have a positive PDGID whereas antiparticles a negative one. The list of PDGID of some particles is
given in table 6

Table 6: PDGID of some elementary particles[2]
Quarks Leptons Bosons
d 1 e− 11 γ 22
u 2 µ− 13 Z 23
s 3 τ− 15 W+ 24

CutLang provides an internal function that obtains a particle’s PDGID. Particles of a certain type can be
selected using this functionality, e.g. :

select PDGID(LEP[0]) == -11

This command selects positrons. (Positron is the antiparticle of electron, therefore it has a negative PDGID)

A.4 Mathematical operators and functions

Mathematical functions available in CutLang are listed in Table 7. Trigonometric and logarithmic functions are
implemented with their usual meanings. The Heaviside step function or the unit step function hstep, which was
also added recently, is a discontinuous function, named after Oliver Heaviside, whose value is zero for negative
arguments and one for positive arguments. The reducer functions for minimization and maximization, min
and max, which were added recently, are discussed in Appendix A.9.5. The reducer function size / count

returns the number of elements of a given set, such as the number of electrons.

Table 7: mathematical and logical operators
Meaning Operator Meaning Operator

number of Size() Count() NumOf() absolute value abs()
tangent tan() hyperbolic tangent tanh()

sine sin() hyperbolic sine cosh()
cosine cos() hyperbolic cosine sinh()

natural exponential exp() natural logarithm log()
square root sqrt() Heaviside step function hstep()

as close as possible ˜= usual meaning + - / *
as far away as possible ˜! to the power ˆ

5

A.5 Comparison, range and logical operators

CutLang understands the basic mathematical comparison expressions and logical operations. C/C++ operator
notations and their Fortran counterparts are recognized and correctly interpreted. Additionally square brackets
are used to define inclusive or exclusive ranges. The available comparison, range and logical operators can be
found in Table 8.

Table 8: Comparison, range and logical operators in CutLang
Keywords Explanation

> >= == <= < usual meaning
GT GE EQ LE LT usual meaning

!= NE not equal
[] in the interval
] [not in the interval
NOT logical not

AND and && logical and
OR or || logical or

A.5.1 Logical operations

The use of Boolean operators (AND, OR, NOT) can make it easy to write the event selection criteria. In
CutLang , logical AND and logical OR operator had already been used to combine multiple event selection
criteria. The newly implemented logical NOT simplifies the way to write the criteria of event selections in the
analysis code to a great extent. The simplest example code to understand the syntax:

select NOT Size(ELE) > 4

This command selects events which do NOT have number of electrons greater than 4. However, the advantage
of the NOT operator becomes more apparent when trying to negate more complex selections. The event
selection criteria can be combined using the logical AND, OR, NOT. For example :

select (NOT condition1) AND (condition2 OR condition3)

Now let us look at another code :

select Size(ELE) == 2

select NOT ({ELE[0] ELE[1]}q == 0 AND {ELE[0] ELE[1]}m [] 80 100)

The criteria ({ELE[0] ELE[1]}q == 0 AND {ELE[0] ELE[1]}m [] 80 100) can be used for defining Z bosons.
As we have set NOT, we veto events with Z boson while looking for other dilepton signatures. Without us-
ing the NOT command, this selection would not be so straightforward, and would require a more complicated
expression.

A.5.2 Ternary operator

Application of conditional selection criteria is available, including nested statements, using a syntax similar to
that of C++ :

condition ? true-case : false-case

The following example illustrates a use case: if the number of muonsVeto particles equals to 1, then the
MTm quantity should be less than 100 otherwise the MTe quantity should be less than 100:

Size(muonsVeto) == 1 ? MTm < 100 : MTe < 100

A.6 χ2 minimization

In an analysis with a multitude of objects of the same type, the analyst could search for the best combination
defined by some criterion. A typical example, used in fully hadronic tt̄ reconstruction would be to find the
jet combination that would yield the best W boson mass, or to find the two charged leptons that would
result in the best Z boson mass. The need for such a search can be expressed in CutLang using two special

6

comparison operators: ~= and ~!. The former is used in the sense of “as close as possible to” whereas the
latter for calculation “as far as possible from”. These two operators can be used to express χ2 minimization
kinds of operations. The indices of the particles in such a search are to be given as negative. For example, the
statement “find two leptons with a combined invariant mass as close to 90.1 GeV” can be expressed in CutLang
notation as { LEP -1 LEP -1 }m ~= 90.1 . In this case, CutLang finds the best pair of particles satisfying
the condition, and stores it per event for possible later use. However the analyzer should not use negative
indices directly inside the region block. It is a much better practice that improves readability to define a new
object such as define ZLepRec = LEP[-1] LEP[-1]. This definition can be used when defining histograms
or other selection criteria, such as when selecting the charge of the found lepton pair, etc. If another particle
of the same type (e.g. another lepton) is to be found, it is necessary to use a different but still negative index
value.

A.7 Definitions

ADL and CutLang allow to assign alias names to constants (e.g. Z boson mass) or variables (e.g. angular
variables between objects, mass of the Z boson reconstructed from two leptons, etc.). The syntax and examples
are given in Table 9. Note that the keyword define can also be shortened as def.

Table 9: Simple definitions
Keywords argument1 symbol1 argument1 Example

define name :/= value define mZprime = 500
define name :/= function define mTop1 : m(Top1)
define name :/= particle(s) define Zreco : ELE[0] ELE[1]

A.8 Tables

The present version of CutLang incorporates tables to implement various HEP related quantities, such as
efficiencies, acceptances or trigger turn-on curves. Currently only one and two-dimensional tables can be used.
These tables should have a name and a table type, specified by the tabletype keyword, where the latter
defines what information is hosted by the table. Currently, only efficiency tables are recognized, therefore the
table type information only serves as documentation and is not used by the interpreter. However, as other
uses for tables are developed, table type would become more relevant in the future. Tables must also specify
the number of variables (1 or 2) using the nvars keyword as well as the availability of errors on the central
value (true or false) using the errors keyword. These should be followed by the table data, using the value
[lower-error upper-error] lower-limit1 upper-limit1 [lower-limit2 upper-limit2] notation. Once defined in the
definitions section, the table can be referred to and used in object and event selection. An example table is
shown below:

table tightmuoneff

tabletype efficiency

nvars 2

errors true

value err- err+ min max min max

0.1 0.01 0.02 0.0 10.0 -5.5 0.0

0.1 0.01 0.02 0.0 10.0 0.0 5.5

0.2 0.01 0.03 10.0 20.0 -5.5 0.0

0.2 0.01 0.03 10.0 20.0 0.0 5.5

0.4 0.01 0.04 20.0 50.0 -5.5 0.0

0.4 0.01 0.04 20.0 50.0 0.0 5.5

0.7 0.01 0.05 50.0 70.0 -5.5 0.0

0.7 0.01 0.05 50.0 70.0 0.0 5.5

0.95 0.01 0.06 70.0 1000.0 -5.5 0.0

0.95 0.01 0.06 70.0 1000.0 0.0 5.5

1both : and = can be used interchangeably

7

A.9 Manipulating objects

A.9.1 Defining new objects

New objects can be declared using a simple syntax:

object new_object_name : base_object_name

where the object keyword can also be shortened as obj, and instead of the symbol :, the keywords using

and take can be used. The base object name can be a base object class, or a previously defined new object
type such in the case of defining b-tagged jets from already defined high transverse momentum jets. These are
usually called derived objects. An example, defining a derived new electron type based on predefined electrons
would be written as:

obj goodEle : ELE

One way of defining a derived object type is to list a set of selection critieria that distinguishes it from the
base object, such as:

object AK4jets

take JET

select {JET_}Pt > 30

select {JET_}AbsEta < 2.4

It is also possible to create a new object by forming a group out of multiple base or derived objects, for
example, to create a lepton object from electrons and muons. This is achieved using the Union function, as
shown below. This particular case of new object creation does not use any selection.

object leps : Union(MUO , ELE, TAU) # add all leptons into a set

object gleps : Union(goodEle , goodMuo) # add all derived leptons into another set

A.9.2 Sorting objects

By default, objects are sorted according to their transverse momentum, pt, in descending order. For example,
ELE[0] denotes the electron having the highest transverse momentum. In some cases, objects may need to be
sorted according to some other property, such as energy, pseudorapidity etc. In the current version, this can
be done as:

sort {ELE_ }E ascend

This command sorts electrons according to their energy in ascending order, i.e. ELE[0] will have the least
energy. Sorting can also be done in the descending order by using descend.

A.9.3 Object combinatorics

Let us assume that we have an event with 5 jets, and we would like to reconstruct all hadronic Z bosons in
the event. What are the combinations? Numbering the jets from 1 to 5, some possibilities are given in Table
10, in the left panel. It is obvious that not all possibilities are listed, and finally only one possibility can be
true: after all a jet can not be used to reconstruct two different Z bosons. On top of this, other requirements
might be applied to further restrict the possible Z candidates. For example, there might be a pseudorapidity
range limit on each candidate, the transverse momentum of the jets forming the Z boson could be limited,
the angular separation between the hadronic Z candidate and the first constituent jet might be limited, and
finally, the invariant mass of the Z candidate might be requested to be in a certain range. After all these
restrictions, the same initial set might be reduced to the combinations listed in the right panel of Table 10,
where the candidates that did not pass the requirements are shown as stroked out.

8

Table 10: Combining two jets to reconstruct a hadronic Z boson
possibility ID Z1 Z2

1 j1j2 j3j4
2 j1j2 j3j5
3 j1j2 j4j5
4 j1j3 j2j4
5 j1j3 j2j5
6 j1j3 j4j5
...

possibility ID Z1 Z2

1 j1j2 j3j4
2 j1j2 j3j5
3 j1j2 j4j5
4 j1j3 j2j4
5 j1j3 j2j5
6 j1j3 j4j5
...

This combination example can be written in CutLang as:

object hZs : COMB(jets[-1] jets[-2]) alias ahz #

the candidate is temporarily called ahz}

select {ahz}AbsEta < 3.0

select {jets[-2]}Pt > 2.1

select {jets[-1]}Pt > 5.1

select {jets[-1], ahz }dR < 0.6 # dR between ahz and its constituent 1, apply to all

select {ahz}m [] 10 200

In order to activate this new object, and eliminate the combinations that do not satisfy the requirements,
one has to put a selection command into the running algorithm (or region); this could be, for example, to have
at least two hadronic Z candidates per event:

algo testCombinations

select Size(jets) >= 2 #we need at least 2 jets for a Z boson

select Count(hZs) >= 2 #the object name is used, not the temporary alias.

As indicated by Table 10 right side, there are still multiple possibilities, such as rows 2, 4 and 5. To further
reduce these by killing the overlapping candidates and leave a single valid one, some sort of ideal condition
should be specified. This can be achieved using the previously discussed χ2 minimization. As an example
case, let us require the masses of both candidates to be as close as possible to the known Z mass. Now, the
final algorithm is given as:

object hZs : COMB(jets[-1] jets[-2]) alias ahz #

the candidate is temporarily called ahz

select { ahz }AbsEta < 3.0

select {jets[-2] }Pt > 2.1

select {jets[-1] }Pt > 5.1

select {jets[-1], ahz }dR < 0.6 # dR between ahz and its constituent 1, apply to all

select { ahz }m [] 10 200

define zham : {hZs[-1]}m

define zhbm : {hZs[-2]}m

define chi2 : (zham - 91.2)^2 + (zhbm - 91.2)^ 2}

region testCombinations

select ALL # to count all events # count number size are all the same.

select Size(jets) >= 2 # we need at least 2 jets for a Z boson

select Count(hZs) >= 2 # we need at least 2 Zhad candidates.

select chi2 ~= 0 \# we kill here overlapping candidates. .

A.9.4 Looping over a subset of the object collection

By default, CutLang loops over all objects in a given collection. However, sometimes it is necessary to loop
only over a subset, such as looping only through the first 3 jets. ADL and CutLang allow to specify the subset,
e.g. as jets[0:3].

9

A.9.5 Minimum and maximum of object attributes

Looping over objects can be used for selecting the minimum or maximum of a function based on any object
attribute. An explanatory example could be to apply a selection based on the minimum value of the angular
separation between each of the three most energetic jets and the most energetic electron. In CutLang , this
criterion can be expressed as:

select Min(dR(JET[0:2], ELE[0])) > 0.9 .

A.9.6 Summing object attributes

CutLang allows looping over an attribute to calculate the sum of their values. A typical example would be the
sum of transverse momenta of a set of jets. Although this frequently used function is predefined and available
as HT, it could also be written as:

select Sum(pT(JET)) >= 20 .

A.9.7 Object constituents

Sometimes, the analysis might necessitate a selection based on jet constituents. CutLang allows the modifier
word constituents only in case of jets (or any other jet-like objects, such as the large radius FatJets) to refer
to these. An example for defining a new jet object based on criteria on the constituents would be:

object goodJet using JET

select q(JET constituents) == 0 #select neutral constituents

select Sum(pT(JET constituents)) < 40 # PT from remaining constituents

Here the first criterion removes all the charged constituents of each jet and eventually the jet itself if it has
no more constituents left, whereas the second criterion imposes an upper limit of 40 GeV to the sum of the
transverse momenta of the remaining constituents of each jet. All other functions available in CutLang would
work in the same way.

A.9.8 Daughter particles

While defining a new particle based on MC truth information, it is sometimes necessary to access the daughters
of a given particle. CutLang is capable of accessing the daughters of of an MC truth particle. In the following
example, the first selection criterion filters the particles that decayed into two or more daughters, while the
second criterion is used to select only the daughters with electric charge.

object DVcandidates take GEN

select daughters(GEN) > 1 # 1 child not accepted

select abs(q(GEN daughters)) > 0 # charged daugters only

A.9.9 Hit and miss method

The ApplyHM function can be used to define new objects which pass or fail the efficiency test in that particular
region of the parameter space. In CutLang , the random number generation is achieved via the TRandom3 [3]
function in ROOT libraries. This function reports the time cost of the call to be about 5 ns on an Intel i7
CPU running at 2.6 GHz.

An example for electrons recorded by an imaginary detector whose electron detection efficiency is described
by a table called myDet can be written as:

object myElectron

take ELE

select applyHM(myDet({ELE}pT , {ELE}Eta) == 1) # 0 to reject, 1 to accept.

The analysis algorithm can make use of this newly defined object, myElectron, to apply selection criteria,
such as the available number of electrons per event etc.

10

A.10 Manipulating Events

A.10.1 Selecting or rejecting events

The conditions based on which an event can be selected or rejected are written in the region / algo blocks.
They start with the select or reject keywords, and are expressed in the form of functions applied on particles
complemented by a comparison operator and a limit value. An example for select would be

select Size(goodEle) >= 2}

The synonyms cut and cmd can be interchangeably used in place of the select keyword. The keyword reject

is equivalent to select not, thus rejecting the events that match the given criteria, as in the example below:

reject {ELE[0] ELE[1]}q == 0 AND {ELE[0] ELE[1]}m [] 80 100

There are also some special keywords that require further discussion. These are shown in Table 11. Select
ALL accepts all events, for example it can be used for event counting purposes. The next two are scale factors
mostly used in ATLAS related analyses. For other input file formats these scale factors are automatically set
to unity.

Table 11: Special Conditions in CutLang
Keywords Example Explanation

ALL select ALL accept all events
LEPsf cmd LEPsf apply leptonic scale factor to MC events
bTagSF cmd bTagSF apply b-jet tagging scale factor to MC events

A.10.2 Weighing events

Many analyses require events to be weighted for cross section and luminosity, for trigger efficiencies, or with
various scale factors. CutLang has a mechanism for applying constant event weights or event weights from
functions, for which examples are shown below:

weight trigEff 0.95

weight ef2Weight myWeight({ELE_0}pT, {ELE_0}Eta) # weight 2d

The first command sets the weight of the selected events to 0.95, i.e, if the number of selected events is 1000 in
the beginning, now it will be counted as 950. The second command is a slightly more complicated example as
it uses a table which defines the event weight according to two parameters: pT and η. The event weight is thus
obtained from that table according to the attributes of the electron with the highest transverse momentum.

A.10.3 Saving events

In CutLang , it is possible to save the currently surviving events at any stage of the running algorithm. The
events are saved into a ROOT [4] file using the command save followed by the user-given file name without
the .root extension which is automatically added. It is possible to save multiple times in a single algorithm
(region) or multiple algorithms. The events in the output file are saved in the native format of CutLang ,
known as the lvl0 file. Therefore an example could be:

Save preselects

A.11 Bins, counts and histograms

A.11.1 Bins

In analyses dealing with multiple bins for signal and/or background regions, CutLang provides a simple way
for defining the selections for those bins. The binning of the results should happen as the very last stage of a
selection by using the keyword bin. Either the variable and the bin boundaries should be explicitly listed, or
multiple bins can be assigned to any variable or function using CutLang syntax. These two methods are not
mutually exclusive and can define overlapping regions. It is to be noted that for the former, one defines two
implicit bins: anything below the first value, and anything above the last value are also recorded separately.

11

Results from binning are both printed (depending on the switches in the initialization section of the ADL file)
and recorded as a histogram in the output ROOT file. The examples below illustrate the utilization of the bin
definition in an analysis algorithm:

bin MET 250 300 500 750 1000 # defining multiple bins simultaneously

bin Size(bjets) == 1 AND HT [] 500 1000 # defining a single bin

bin Size(bjets) == 1 AND HT [] 1000 1500 # defining a single bin

A.11.2 Counts

It is possible to register various signal, background or data counts of a region together with their associated
errors. The method to achieve this task is to start the ADL file with the definitions of various count formats.
Below are two such examples where for each format type, multiple processes with different names can also be
defined.

countsformat results

process est, "Total estimated BG", stat, syst

process obs, "Observed data"

countsformat bgests

process lostlep, "Lost lepton background", stat, syst

process zinv, "Z --> vv background", stat, syst

process qcd, "QCD background", stat, syst

A study described in an ADL file might use data counts or a background estimate or all of these for a
statistical analysis. Therefore, the appropriate region has to contain the associated event counts and error
information using the correct syntax. It should be consistent with the previous definitions starting with
keyword counts. Here the counts of each process should be separated by a comma, and the errors can be
specified either as symmetrical denoted with the +- sign or asymmetrical denoted with separate + and - signs.
An example conforming to above definitions is given below.

counts results 230.0 + 16.0 - 10.0 + 10.0 - 12.0 , 224.0

counts bgests 105.0 +16.0 - 10.0 +-1.0 , 123.0 +-2.0 +-12.0 , 2.3 +-0.5 +-1.4

Once the analysis run is complete, the user finds in the output file a histogram for each of the defined
processes with the name defined in the format commands. These histograms can be recalled and used later
during the statistical analysis stage.

A.11.3 Histograms

CutLang allows defining 1D and 2D histograms for any event variable. The syntax for defining histograms
follows closely the notation in ROOT. Any histogram should have a name, like h1mReco, and a list of parameters
separated by commas. The explanation of the histogram contents should be given in quotation marks, e.g.,
‘‘Z candidate mass (GeV)"; the number of bins, lower and upper limits as numbers, e.g. 100, 0, 200; and
finally the quantity to histogram with the ADL notation, e.g. {ELE_0 ELE_1}m. A similar syntax is also used
for the 2D histograms. The example below show definitions of 1D and 2D histograms:

region Wtopmass

select ...

select ...

hmW,"W mass (GeV)", 70, 50, 150, mW

hmTop,"Top mass (GeV)", 70, 0, 700, mTop

hmTopmW,"Top and W mass correlation (GeV)", 50, 50, 150, 70, 0, 700, mW, mTop

Apart from the user-defined histograms, CutLang by default automatically fills and saves a cutflow efficiency
histogram for each analysis region. In case binning exists, CutLang also saves a histogram with bin counts.

Figure 1 shows a snapshot of the ROOT TBrowser, with histograms in an output file listed, and one of the
histograms displayed.

12

Figure 1: An example output from ROOT’s TBrowser GUI showing histograms booked and filled by CutLang

A.12 Structure of a complete ADL file

To be run with CutLang , an ADL file should follow a definite structure order as described in Section ??. In
this structure, there are mostly optional sections and one compulsory section. The structure order consists of
initialization, count format, definitions, new objects, more definitions using new objects, yet newer objects,
and event categorization commands. In this list only the event categorization commands are mandatory. The
ADL file structure allows multiple concurrent commands to be executed. The details of the first and the last
sections are covered next.

A.12.1 Initialization and information section

Some of the possible settings in the initialization section have already been discussed in Table ??. It is also
possible to include, in this section, some information defining the work that is being done. The allowed
keywords and their meaning is explained in the table below.

Table 12: Information keywords of CutLang
Keywords Type Explanation

info ID a name defining the work
experiment ID a name defining the experiment

id string any string defining the work
title string any string for the paper title

publication string any string, the publication information
sqrtS number a real number, the collider energy (GeV)
lumi number a real number, collected data (fb-1)
arXiv string any string containing the arxiv information

hepdata string any string containing the hepdata information
doi string any string containing the doi information

A.12.2 Regions and algorithms

CutLang can execute multiple commands in the event categorization section of the ADL file, meaning that
the analyst can test multiple methods on the same events independently of each other during design, or work

13

with multiple signal and control regions. The set of commands to be executed for each independent method
is called either an algorithm or a region, therefore the keyword to be used is algo or algorithm or region

followed with a user selected name, such as:

region preselection

Moreover it is possible to define one (1) layer of dependency such that a region can be marked as dependent
on another. In this case, the independent region’s commands are executed first and the results are saved in
a memory cache, and later the dependent region’s commands are executed based on that cache. A typical
case would be to create multiple signal regions based on a common preselection. This example is illustrated
below. Note that the name of the independent region has been used in the dependent region’s list of commands
directly, without any preceding keywords.

region preselection

select

region SRA

preselection

select

region SRB

preselection

select

B The CutLang framework

B.1 installation and compilation

The code for the CutLang framework can be found in

https://github.com/unelg/CutLang

The ROOT library from CERN should be pre-installed. After downloading the source code, the make

command should be executed in the CLA subdirectory to compiles the whole program. Analyses in CutLang
are run runs subdirectory using the script CLA.sh or CLA.py. This subdirectory contains several example files
that demonstrate various aspects of ADL and CutLang . An analysis can be run using the command where
the input ROOT file type can be : LHCO FCC LVL0 DELPHES ATLASVLL ATLMIN ATLASOD CMSOD CMSNANO .
The -i or --inifile option is used for specifying the adl file.

B.2 External user functions

The addition of the new so called external user functions to the existing set of internal functions is partially
automatized. The python helper script insertExternalFunction.py in the scripts directory is developed to
accomplish this task. It accepts the name of the header file containing the new function as an argument. The
automatization currently works with a template based setup, therefore only with certain type of functions.
Currently the following input and return types for external functions can be used for building an external
function into CutLang :

• receives a vector of TLorentzVectors and an int, returns a vector of TLorentzVector;

• receives a vector of TLorentzVectors, returns a double;

• receives a vector of TLorentzVectors and a TVector2, returns a double;

• receives a vector of TLorentzVectors and a TLorentzVector, returns a double;

• receives 3 TLorentzVectors, returns a double;

The external function must be declared and defined using C/C++ programming language in a header file
before running the script. The script is run with the following command:

python insertExternalFunction.py -ext abc

where abc is name of the header file without .h extension. Once the helper script runs successfully, the
CutLang binary has to be recompiled once to use the new function within an ADL file.

14

https://github.com/unelg/CutLang

B.3 Incorporation of new input file types

This section describes how to build the interface between a new data file format represented as a flat ntuple
and the standard types used by the CutLang interpreter. This is one aspect of the current version of CutLang
that requires some coding expertise. CutLang uses ROOT’s MakeClass for this purpose.

• Obtain a sample ROOT ntuple file containing the new data format and load into ROOT (e.g., using
TFile f("myfile.root"))

• Call the ROOT MakeClass command on the relevant tree, specifying a class name

tree->MakeClass("NewFormatName");

• Move the resulting header file (NewFormatName.h) into the analysis core subdirectory, and is include
it in the main code CLA.Q

• Move the resulting implementation macro (NewFormatName.C) into the CutLang/CLA directory, and in-
clude the following required headers in it:

#inc lude <NewFormatName . h>
#inc lude <TH2. h>
#inc lude <TStyle . h>
#inc lude <TCanvas . h>
#inc lude <s i g n a l . h>
#inc lude <TObject . h>
#inc lude <TBranchElement . h>

#inc lude ” dbx e l e c t ron . h”
#inc lude ”dbx muon . h”
#inc lude ” dbx j e t . h”
#inc lude ” dbx tau . h”
#inc lude ”dbx a . h”
#inc lude ”DBXNtuple . h”
#inc lude ” a n a l y s i s c o r e . h”
#inc lude ” A n a l y s i s C o n t r o l l e r . h”

• In the event loop, the input data must be transferred to the standard CutLang types, e.g., the electron,
muon, photon and jet particle vectors, without forgetting any available event-wide information like
RunNumber, EventNumber etc. An example conversion for the LHCO format is:

TLorentzVector a lv ; dbxMuon ∗adbxm ; vector<dbxMuon> muons ;
f o r (unsigned i n t i =0; i<Muon ; i++) {

a lv . SetPtEtaPhiM (Muon PT [i] , Muon Eta [i] , Muon Phi [i] , (105 .658/1E3)) ; // in GeV
adbxm= new dbxMuon(a lv) ;
adbxm−>setCharge (Muon Charge [i]) ;
adbxm−>setEtCone (Muon ETiso [i]) ;
adbxm−>setPtCone (Muon PTiso [i]) ;
adbxm−>s e t P a r t i c l e I n d x (i) ;
muons . push back (∗adbxm) ;
d e l e t e adbxm ;

}

• Modify the end of the .C file to be as follows:

Ana lys i sObjec t s a0={muos map , eles map , taus map , gams map , jets map , l j e t s map ,
truth map , combo map , const i t s map , met map , anevt } ;

aCtr l . RunTasks (a0) ;
} // end o f event loop
aCtr l . F i n a l i z e () ;
} // end o f Loop func t i on

• Modify the running script (CLA.sh or CLA.py) to incorporate the new file format.

15

References

[1] “PDG Particle Identification Numbers.” https://pdg.lbl.gov/2013/pdgid/PDGIdentifiers.html.

[2] P. D. Group, P. A. Zyla, et al., Review of Particle Physics, Progress of Theoretical and Experimental
Physics 2020 (2020)
[https://academic.oup.com/ptep/article-pdf/2020/8/083C01/33653179/ptaa104.pdf]. 083C01.

[3] M. Matsumoto and T. Nishimura, Mersenne twister: a 623-dimensionally equidistributed uniform
pseudo-random number generator, ACM Trans. Model. Comput. Simul. 8 (1998) 3–30.

[4] R. Brun and F. Rademakers, ROOT - An Object Oriented Data Analysis Framework, Nucl. Inst. and
Meth. in Phys. Res. A (1997) 81–86.

16

https://pdg.lbl.gov/2013/pdgid/PDGIdentifiers.html
http://arxiv.org/abs/https://academic.oup.com/ptep/article-pdf/2020/8/083C01/33653179/ptaa104.pdf

	User Manual
	Blocks and keywords
	Predefined physics objects
	Predefined functions
	PDGID of particles

	Mathematical operators and functions
	Comparison, range and logical operators
	Logical operations
	Ternary operator

	2 minimization
	Definitions
	Tables
	Manipulating objects
	Defining new objects
	Sorting objects
	Object combinatorics
	Looping over a subset of the object collection
	Minimum and maximum of object attributes
	Summing object attributes
	Object constituents
	Daughter particles
	Hit and miss method

	Manipulating Events
	Selecting or rejecting events
	Weighing events
	Saving events

	Bins, counts and histograms
	Bins
	Counts
	Histograms

	Structure of a complete ADL file
	Initialization and information section
	Regions and algorithms

	The CutLang framework
	installation and compilation
	External user functions
	Incorporation of new input file types

