
Gaussian Local Phase Approximation in a Cylindrical Tissue Model: Appendices

Appendix A: Phase approximation by cumulant expansion

The transverse local magnetization during magnetic resonance imaging is a function of the ensemble average, denoted
by 〈. . . 〉, of the accumulated spin phase at this position

m(~r, t) = m0

〈
e−iΨ(~r,t)

〉
, (A1)

where Ψ(~r, t) is a random variable dependent on the stochastic trajectory of a reflected Brownian motion process,
that is

Ψ(~r, t) =

t∫
0

dξ ω(~R(~r, ξ)) . (A2)

The spatial path variable ~R(~r, ξ) represents a Wiener process in the three-dimensional dephasing domain with reflective
boundary conditions [1]. The ensemble average can be approximated by a cumulant expansion [2, 3]

ln
〈

e−iΨ(~r,t)
〉
=

∞∑
k=1

[−i]k

k!

〈
Ψk(~r, t)

〉
c
, (A3)

with 〈. . . 〉c denoting the respective cumulant. Terminating the exponential expansion series after the second term
leads to 〈

e−iΨ(~r,t)
〉
≈ exp

(
−i 〈Ψ(~r, t)〉c −

1

2

〈
Ψ2(~r, t)

〉
c

)
. (A4)

The first two cumulants can be expressed in terms of the moments of the accumulated phase:

〈Ψ(~r, t)〉c = 〈Ψ(~r, t)〉︸ ︷︷ ︸
=α(~r,t)

, (A5)

〈
Ψ2(~r, t)

〉
c
=

〈
Ψ2(~r, t)

〉︸ ︷︷ ︸
=2β(~r,t)

−〈Ψ(~r, t)〉2 . (A6)

Therefore, the local magnetization in the GLP approximation with one cumulant is

mI(~r, t) = m0 exp (−i 〈Ψ(~r, t)〉) . (A7)

If an additional second cumulant is taken into account, this becomes

mII(~r, t) = m0 exp

(
−i 〈Ψ(~r, t)〉 − 1

2

〈
Ψ2(~r, t)

〉
+

1

2
〈Ψ(~r, t)〉2

)
. (A8)

In the Gaussian Phase approximation [4], the total magnetization is described by

MGP (t)

M0
= exp

−
t∫

0

dξ[t− ξ]K(ξ)

 (A9)

with the correlation function

K(t) =
1

V

∫
V

d3~r

∫
V

d3~r0 ω(~r)p(~r, ~r0, t)ω(~r0) . (A10)
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A connection between α(~r, t) and the correlation function K(t) can be found from their definitions:

K(t) = − 1

V

∫
V

d3 ~rω(~r)
∂α(~r, t)

∂t
. (A11)

Introducing the angular dependency from Eq. (28) results in

K(t) = δω
η

η − 1

1

R2
C

RD∫
RC

drr

︸ ︷︷ ︸
= 1−η

2η
~1ᵀk

R2
C

r2︸︷︷︸
=r−2

∂

∂t
α2(t)︸ ︷︷ ︸
=~α2(t)

(A12)

= −δω

2
~1ᵀkr−2 ∂

∂t
~α2(t) . (A13)

With the explicit expression for ~α2(t) from Eq. (73) and the general property ∆r
~1 = ~0 one finally gets

K(t) =
δω2

2
~1ᵀkr−2e t

τ [∆r−4r−2]r−2~1 . (A14)

With this expression, the integral in the exponent of the right hand side of Eq. (A9) can be written as:

−
t∫

0

dξ[t− ξ]K(ξ) =
δω2

2
τt~1ᵀkr−2[∆r − 4r−2]−1r−2~1 +

[τδω]2

2
~1ᵀkr−2

[
1− e t

τ [∆r−4r−2]
]
[∆r − 4r−2]−2r−2~1

The last term [∆r − 4r−2]−2r−2~1 can easily be simplified using Eq. (72):

[∆r − 4r−2]−2r−2~1 = [∆r − 4r−2]−1 [∆r − 4r−2]−1r−2~1︸ ︷︷ ︸
=− 1

4
~1

= −1

4
[∆r − 4r−2]−1~1 (A15)

= −1

4

[
r2

2 ln(r)− 1

8
+

r2 + r−2

8

ln(η)

1− η2

]
~1 , (A16)

resulting in

−
t∫

0

dξ[t− ξ]K(ξ) =− [τδω]2

8

t

τ
~1ᵀkr−2~1− [τδω]2

8
~1ᵀk

[
2 ln(r)− 1

8
+

1+ r−4

8

ln(η)

1− η2

]
~1

+
[τδω]2

8
~1ᵀkr−2e t

τ [∆r−4r−2]

[
r2

2 ln(r)− 1

8
+

r2 + r−2

8

ln(η)

1− η2

]
~1 .

Since the identity

~1ᵀkr−2~1 =
2η

1− η

1

R2
C

RD∫
RC

drr
R2

C
r2

=
η ln(η)

η − 1
(A17)

holds, the matrix expression can be expressed as an integral:

~1ᵀk

[
2 ln(r)− 1

8
+

1+ r−4

8

ln(η)

1− η2

]
~1 =

2η

1− η

1

R2
C

RD∫
RC

drr
[
1

4
ln

(
r

RC

)
− 1

8
+

1

8

[
1 +

R4
C

r4

]
ln(η)

1− η2

]
(A18)

= −1

4
. (A19)



3

With this, one gets:

−
t∫

0

dξ[t− ξ]K(ξ) =
[τδω]2

8

[
t

τ

η ln(η)

1− η
+

1

4

]
+

[τδω]2

64
~1ᵀkr−2e t

τ [∆r−4r−2]

[
r2 [2 ln(r)− 1] +

[
r2 + r−2

] ln(η)

1− η2

]
~1 .

Introducing this expression into Eq. (A9), one finally arrives at Eq. (90). The explicit analytical expression for the
correlation function is (see Eq. (24) in [4])

K(t) = δω2
∞∑

n=1

F 2
ne−λ2

n,2
t
τ (A20)

with the coefficients Fn given in Eq. (88) that can be summarized to the vector

Fn︸︷︷︸
=~Fᵀ

=

√
η

1− η

1

R2
C

RD∫
RC

drr

︸ ︷︷ ︸
= 1−η

2η
~1ᵀk

R2
C

r2︸︷︷︸
=r−2

Φn,2(r)︸ ︷︷ ︸
=Φ2

1√
Nn,2︸ ︷︷ ︸

=N
− 1

2
2

,

~F ᵀ =
1

2

√
1− η

η
~1ᵀkr−2Φ2N

− 1
2

2 , (A21)

~F =
1

2

√
1− η

η
N

− 1
2

2 Φᵀ
2r

−2k~1 , (A22)

with Φ2 given in Eq. (C5). Thus, the correlation function in Eq. (A20) can be written in the form

K(t) = δω2 ~F ᵀe−Λ2
2

t
τ ~F (A23)

=
δω2

4

1− η

η
~1ᵀkr−2Φ2 N

− 1
2

2 e−Λ2
2

t
τ N

− 1
2

2︸ ︷︷ ︸
=e−Λ2

2
t
τ N−1

2

Φᵀ
2r

−2k~1 .

Using Eq. (C7) or Eq. (C8), the matrix Φᵀ
2 can be expressed as

Φᵀ
2 =

2η

1− η
N2Φ

−1
2 k−1 , (A24)

resulting in

K(t) =
δω2

2
~1ᵀkr−2 Φ2e−Λ2

2
t
τ Φ−1

2︸ ︷︷ ︸
=e

t
τ

[∆r−4r−2]

k−1r−2k︸ ︷︷ ︸
=r−2

~1 , (A25)

which coincides with Eq. (A14).

Appendix B: Analytical moments

In order to obtain the form of the integrals shown in Eqs. (30) - (32), the two identities

δ(φ− φ0) =
1

2π
+

1

π

∞∑
n=1

cos(nφ) cos(nφ0) (B1)

and

eDξ[∆r+
1
r2

∆φ] cos(nφ) = cos(nφ) eDξ[∆r−n2

r2
] (B2)

can be used to write the propagator from Eq. (8) as

p(r, φ, r0, φ0, ξ) =

∞∑
n=0

2− δn,0
2π

cos(nφ) cos(nφ0) eDξ[∆r−n2

r2
] δ(r − r0)

r
, (B3)
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directly leading to the respective integral forms. The integrals from Eqs. (30) - (32) can also be used to get the
differential equations from Eqs. (33) - (35). These can be solved by introducing an appropriate ansatz for the
respective moment function. The solution for the first moment is

α2(r, t)

τδω
=

1

4

[ ∞∑
n=1

M+
n,2

Nn,2
Φn,2(r)e−λ2

n,2
t
τ − 1

]
, (B4)

with the normalization factors Nn,ν given in Eq. (14) and the integral coefficients M±
n,ν defined below in Eq. (B8).

The solutions for the second moments are

β0(r, t)

[τδω]2
=

1

8

η ln(η)

η − 1

t

τ
− 1

32
+

1

32

∞∑
n=1

M+
n,2

Nn,2
Φn,2(r) e−λ2

n,2
t
τ +

1

8

∞∑
n=2

M−
n,0

Nn,0
Φn,0(r)

1− e−λ2
n,0

t
τ

λ2
n,0

, (B5)

and

β4(r, t)

[τδω]2
=

1

128
+

1

432

∞∑
n=1

M+
n,4

Nn,4
Φn,4(r)e−λ2

n,4
t
τ − 1

96

∞∑
n=1

M+
n,2

Nn,2
Φn,2(r) e−λ2

n,2
t
τ . (B6)

The integral coefficients are

M±
n,ν =

1

R1±1
C

RD∫
RC

dr r±1 Φn,ν(r) (B7)

=
2

πλ1±1
n,ν

 J ′
ν(λn,ν)

J ′
ν

(
λn,ν√

η

)S′
±1,ν

(
λn,ν√

η

)
− S′

±1,ν (λn,ν)

 , (B8)

with the Lommel functions Sn,ν(z). Obviously, the first sum appearing in Eq. (B5) contains the expression for α2(r, t)
given in Eq. (B4). Furthermore, it is advantageous to introduce the time independent function

f(r) =
1

8

∞∑
n=2

M−
n,0

Nn,0

Φn,0(r)

λ2
n,0

(B9)

=
π

8

∞∑
n=2

Φn,0(r)J1

(
λn,0√

η

) J1(λn,0)S
′
−1,0

(
λn,0√

η

)
− J1

(
λn,0√

η

)
S′
−1,0(λn,0)

[J1(λn,0)]2 −
[
J1

(
λn,0√

η

)]2 . (B10)

Thus, Eq. (B5) can be written as:

β0(r, t)

[τδω]2
=

1

8

η ln(η)

η − 1

t

τ
+

1

8

α2(r, t)

τδω
+ f(r)− 1

8

∞∑
n=2

M−
n,0

Nn,0
Φn,0(r)

e−λ2
n,0

t
τ

λ2
n,0

. (B11)

For long times, the sums containing the exponential functions in the expressions for α2(r, t) in Eq. (B4) and β0(r, t)
in Eq. (B11) vanish:

α2(r, t � τ)

τδω
= −1

4
(B12)

β0(r, t � τ)

[τδω]2
=

1

8

η ln(η)

η − 1

t

τ
− 1

32
+ f(r) (B13)

and consequently the partial differential equation (34) reduces to the ordinary differential equation

R2
C∆rf(r) =

1

8

[
η ln(η)

η − 1
−

R2
C

r2

]
(B14)

which is solved by

f(r) = a(η) +
1

32

η ln(η)

η − 1

r2

R2
C
− 1

64

[
η ln(η)

η − 1
+ 2ln

(
r

RC

)]2
. (B15)
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To find the integration constant a(η), on has to bear in mind that f(r) is a linear combination of the functions Φn,0(r),
as can been seen in Eq. (B10). Thus, from the orthogonality relation (see Eq. (70) in [5])∫ RD

RC

dr rΦn,0(r) = 0 , (B16)

it follows that ∫ RD

RC

dr rf(r) = 0 . (B17)

Introducing Eq. (B15) leads to

a(η) =
1

32
+

ln(η)

64

[
3
1− η2

[1− η]2
+ ln(η)

1− η3

[1− η]3

]
, (B18)

and finally results in the full form of f(r):

f(r) =
ln(η)

64

[
3
1− η2

[1− η]2
+ ln(η)

1− η3

[1− η]3

]
+

1

32

[
η ln(η)

η − 1

r2

R2
C
+ 1

]
− 1

64

[
η ln(η)

η − 1
+ 2ln

(
r

RC

)]2
. (B19)

Introducing this expression into Eq. (B11) one finally obtains Eq. (37). Alternatively, the moments can also be
obtained by integrating over the diffusion propagator as defined in Eq. (8). The first moment is then

α2(r, t)

τδω
= −1

4
+ 2π

∞∑
n=1

e−λ2
n,2

t
τ

λn,2
Φn,2(r)

[J ′
2(

λn,2√
η )]2−η

3
2 J ′

2(λn,2)J
′
2(

λn,2√
η )[

λ2
n,2−4η

]
[J ′

2(λn,2)]2−
[
λ2
n,2−4

]
[J ′

2(
λn,2√

η )]2
(B20)

which coincides with Eq. (36), and the coefficients of the second moment are

β0(r, t)

[τδω]2
=
2

π

∞∑
n=1

∞∑
m=2

W 0,2
m,n

Nn,2Nm,0

J ′
2(

λn,2√
η )− η

3
2 J ′

2(λn,2)

λ3
n,2 J

′
2(

λn,2√
η )

Φm,0(r)

λ2
m,0 − λ2

n,2

[
e−λ2

m,0
t
τ − 1

λ2
m,0

+
1− e−λ2

n,2
t
τ

λ2
n,2

]
(B21)

+
16

π2

η

1− η

∞∑
n=1

1− η
3
2
J ′
2(λn,2)

J ′
2

(
λn,2√

η

)
 e−λ2

n,2
t
τ −1+λ2

n,2
t
τ

Nn,2λ10
n,2

,

and

β4(r, t)

[τδω]2
=

2

π

∞∑
n=1

∞∑
m=1

W 4,2
m,n

Nn,2Nm,4

J ′
2(

λn,2√
η )− η

3
2 J ′

2(λn,2)

λ3
n,2 J

′
2(

λn,2√
η )

Φm,4(r)

λ2
m,4−λ2

n,2

[
e−λ2

m,4
t
τ − 1

λ2
m,4

+
1− e−λ2

n,2
t
τ

λ2
n,2

]
. (B22)

The integral coefficients are the integrals over products of the eigenfunctions

W 0,2
m,n =

RD∫
RC

dr0
r0

Φm,0(r0)Φn,2(r0) , (B23)

W 4,2
m,n =

RD∫
RC

dr0
r0

Φm,4(r0)Φn,2(r0) , (B24)

for which no explicit summation formula is known [6].

Appendix C: Matrix calculation of the spectral expansion

In analogy to Eq. (54), the radial eigenfunctions given in Eq. (12) can be written in a discretized version as a column
vector of length N :

Φn,ν(r) → ~Φn,ν =


Φn,ν(r1)
Φn,ν(r2)

...
Φn,ν(rN )

 (C1)
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which is an eigenvector of the discretized version of the cylindrical Bessel differential equation (9)[
∆r − ν2r−2

]
~Φn,ν = −λ2

n,ν
~Φn,ν . (C2)

Combining the eigenvalues λn,ν to the diagonal matrix

Λν = diag (λ1,ν , λ2,ν , . . . , λN,ν) , (C3)

and the eigenvectors ~Φn,ν to the matrix

Φν =
(
~Φ1,ν , ~Φ2,ν , . . . , ~ΦN,ν

)
(C4)

=


Φ1,ν(r1) Φ2,ν(r1) . . .ΦN,ν(r1)

Φ1,ν(r2) Φ2,ν(r2) . . .ΦN,ν(r2)

...
... . . .

...
Φ1,ν(rN )Φ2,ν(rN ). . .ΦN,ν(rN )

 , (C5)

the discretized version of the cylindrical Bessel differential equation (C2) can be combined to the form[
∆r − ν2r−2

]
Φν = −ΦνΛ

2
ν . (C6)

Using the orthogonality relation of the eigenfunctions from Eq. (13), the discretized orthogonality relation can be
written in the form

1− η

2η
Φᵀ

νkΦν = Nν = diag (N1,ν , N2,ν , . . . , NN,ν) , (C7)

with the diagonal matrix k given in Eq. (83) and the normalisation constants NN,ν given in Eq. (14). This
orthogonality relation can be used to express the inverse of the eigenfunction matrix in terms of its transpose:

Φ−1
ν =

1− η

2η
N−1

ν Φᵀ
νk . (C8)

Appendix D: Inversion of the discretized Laplacian

As the first eigenvalue of the discretized Laplacian is zero (see Eq. (15)), the matrix ∆r is singular and the integral
appearing in Eq. (77) cannot be solved directly. Instead, the Drazin inverse has to be applied [7]. Due to ∆r being
diagonalizable, its matrix index is one: Ind(∆r) = 1. In this case, the Drazin inverse is equivalent to a group-inverse
and defined by the three axioms (see Eqs. (1) - (3) in [8])

∆r∆
D
r = ∆D

r ∆r, (D1)
∆D

r ∆r∆
D
r = ∆D

r , (D2)
∆D

r ∆2
r = ∆r . (D3)

Applying Theorem 1 from [8], the integral over the exponential exp(∆rξ/τ) can be written as∫
dξ e−

ξ
τ ∆r = −τ∆D

r e−
ξ
τ ∆r + ξ

[
1−∆r∆

D
r

]
, (D4)

with D denoting the Drazin inverse. Therefore
t∫

0

dξ e−
ξ
τ ∆r = τ∆D

r

[
1− e− t

τ ∆r

]
+ t

[
1−∆r∆

D
r

]
, (D5)

and finally
t∫

0

dξ e−
ξ
τ ∆rr−2~1 = τ∆D

r

[
1− e− t

τ ∆r

]
r−2~1 + t

[
1−∆r∆

D
r

]
r−2~1 . (D6)



7

In general, the Drazin inverse of ∆r can be computed by converting it into its Jordan normal form

∆r = P−1

(
L 0
0 0

)
P , (D7)

where the single zero is due to its diagonalizability (rendering its Jordan form diagonal) and the eigenvalue zero. The
Drazin inverse is then

∆D
r = P−1

(
L−1 0
0 0

)
P . (D8)

For large matrix sizes, this is equivalent to the expression from Eq. (C6) for ν = 0:

∆r = −Φ0Λ
2
0Φ

−1
0 (D9)

= −Φ0diag(0, λ2
2,0, . . . , λ

2
N,0)Φ

−1
0 . (D10)

Thus, the Drazin inverse results in

∆D
r = −Φ0diag(0, λ−2

2,0, . . . , λ
−2
N,0)Φ

−1
0 , (D11)

and the product ∆r∆
D
r appearing in the right hand side of Eq. (D6) is:

∆r∆
D
r = Φ0diag(0, 1, . . . , 1)Φ−1

0 , (D12)

with consequently

1−∆r∆
D
r = Φ0diag(1, 0, . . . , 0)Φ−1

0 . (D13)

Introducing the matrix Φ−1
0 given in Eq. (C8) for ν = 0 one gets with the explicit expressions for the normalization

constants Nn,0 given in Eq. (14) the result

1−∆r∆
D
r =


1 1 . . . 1

1 1 . . . 1

...
... . . .

...
1 1 . . . 1


︸ ︷︷ ︸

=~1~1ᵀ

k . (D14)

Replacing the discretized differential area element k by its continuous variant (see. Eq. (64) in [9]), one gets[
1−∆r∆

D
r

]
r−2~1 = ~1 ~1ᵀkr−2~1︸ ︷︷ ︸

= 2η
1−η

1

R2
C

RD∫
RC

drr
R2

C
r2

(D15)

=
η ln(η)

η − 1
~1 . (D16)

Eq. (D6) can then be written as

t∫
0

dξ e−
ξ
τ ∆rr−2~1 = τ∆D

r

[
1− e− t

τ ∆r

]
r−2~1 + t

η ln(η)

η − 1
~1 . (D17)

Inserting this result into Eq. (77) one obtains:

~β0(t)

[τδω]2
=
1

8

η ln(η)

η − 1

t

τ
~1− 1

32
~1 +

[
1

8
∆D

r

[
e t

τ ∆r − 1
]
r−2 +

1

32
e t

τ [∆r−4r−2]

]
~1 (D18)

=
1

8

~α2(t)

τδω
+

1

8

η ln(η)

η − 1

t

τ
~1 +

1

8
∆D

r e t
τ ∆rr−2~1− 1

8
∆D

r r−2~1 . (D19)
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Comparing the time-independent terms with the analytical expression from Eq. (37), the last term becomes

∆D
r r−2~1 =

1

8

[
η ln(η)

η − 1
1+ 2 ln(r)

]2
~1− 1

4

[
η ln(η)

η − 1
r2 − 1

]
~1− ln(η)

8

[
3
1− η2

[1− η]2
+ ln(η)

1− η3

[1− η]3

]
~1 . (D20)

Since the discretized Laplacian commutes with its Drazin inverse (see Eq. (D1)), one has

∆D
r e t

τ ∆r =

∞∑
l=0

∆D
r ∆l

r

l!

[
t

τ

]l
=

∞∑
l=0

∆l
r∆

D
r

l!

[
t

τ

]l
= e t

τ ∆r∆D
r . (D21)

Thus, the term ∆D
r e t

τ ∆rr−2~1 in Eq. (D19) can be written as

∆D
r e t

τ ∆rr−2~1 = e t
τ ∆r∆D

r r−2~1 (D22)

=
1

8
e t

τ ∆r

[
η ln(η)

η − 1
1+ 2 ln(r)

]2
~1− 1

4
e t

τ ∆r

[
η ln(η)

η − 1
r2 − 1

]
~1− e t

τ ∆r
ln(η)

8

[
3
1− η2

[1− η]2
+ ln(η)

1− η3

[1− η]3

]
~1 .

(D23)

Introducing Eq. (D20) and Eq. (D23) into Eq. (D19) one finally obtains

~β0(t)

[τδω]2
=

1

8

~α2(t)

τδω
+

1

8

η ln(η)

η − 1

t

τ
~1 +

1

16

[
e t

τ ∆r − 1
] [η ln(η)

η − 1

[
ln(r)− r2

2

]
+ [ln(r)]

2

]
~1 . (D24)

or by replacing ~α2(t) from Eq. (73) one gets Eq. (78).
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