



## Supplementary Material: Liquid computing on and off the edge of chaos with a striatal microcircuit

Carlos Toledo-Suárez <sup>1,2,3</sup>, Renato Duarte <sup>1,2,4,6</sup> and Abigail Morrison <sup>1,4,5\*</sup>

 <sup>1</sup>Bernstein Center Freiburg, Albert-Ludwig University of Freiburg, Freiburg im Breisgau, Germany
 <sup>2</sup>Faculty of Biology, Albert-Ludwig University of Freiburg, Freiburg im Breisgau, Germany
 <sup>3</sup>Department of Computational Biology, School of Computer Science and Communication, KTH Stockholm, Sweden
 <sup>4</sup>Institute for Advanced Simulation (IAS-6) and Institute of Neuroscience and Medicine (INM-6), Jülich Research Centre and JARA Jülich, Germany
 <sup>5</sup>Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr-University Bochum, Bochum, Germany

<sup>6</sup>Institute of Adaptive and Neural Computation, School of Informatics, University of Edinburgh, United Kingdom

Correspondence\*: Abigail Morrison Jülich Research Center and JARA, Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6), Building 15.22, 52425 Jülich, Germany, a.morrison@fz-juelich.de

## **1 SUPPLEMENTARY TABLES**

|                    |              | Ĩ                                                                                                        | A: Model Summary                                                                                        |  |  |  |  |
|--------------------|--------------|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--|--|--|--|
| Population         | S            | Input encoding cortical neurons (Cs) striatal medium spiny neurons (MSNs) and striatal                   |                                                                                                         |  |  |  |  |
|                    |              | fast sniking interneurons (FSIs)                                                                         |                                                                                                         |  |  |  |  |
| Connectivi         | <b>f x</b> 7 | Food forward                                                                                             | from Cs to MSNs and ESIs feed forward from ESIs to MSNs, recurrent                                      |  |  |  |  |
| Connectivi         | Ly           | between MSI                                                                                              | $I_{\rm o}$                                                                                             |  |  |  |  |
| Name               | 4.1          | Lealer intern                                                                                            | no                                                                                                      |  |  |  |  |
| Neuron mo          | aei          | Leaky integra                                                                                            | te-and-fire with exponential post-synaptic currents for Cs, leaky integrate-                            |  |  |  |  |
|                    |              | and-fire with                                                                                            | exponential post-synaptic currents and multi-timescale adaptive threshold                               |  |  |  |  |
|                    |              | tuned for intr                                                                                           | insic bursting for MSNs and for fast spiking for FSIs                                                   |  |  |  |  |
| Input              |              | Independent                                                                                              | ixed-rate Poisson spike trains to Cs,                                                                   |  |  |  |  |
|                    |              | gaussian current profile to Cs                                                                           |                                                                                                         |  |  |  |  |
| Measurem           | ents         | Spike activity                                                                                           |                                                                                                         |  |  |  |  |
|                    |              |                                                                                                          | B: Populations                                                                                          |  |  |  |  |
| Name               | Elem         | ents                                                                                                     | Size                                                                                                    |  |  |  |  |
| Cs                 | iaf ns       | c exp neuron                                                                                             | 50.25 per axis                                                                                          |  |  |  |  |
| MSNg               | mat?         | iaf nsc evn ne                                                                                           | uron 500                                                                                                |  |  |  |  |
|                    | mat2         | iaf pse exp ne                                                                                           | uron 50                                                                                                 |  |  |  |  |
| F518               | mat2         | lai psc exp ne                                                                                           |                                                                                                         |  |  |  |  |
|                    |              |                                                                                                          | C: Connectivity                                                                                         |  |  |  |  |
| Name               | Sour         | ce Target                                                                                                | Pattern                                                                                                 |  |  |  |  |
| $FF_{C-MSN}$       | Cs           | MSNs                                                                                                     | Random convergent, $C_{\text{Ex}} \rightarrow 1$ , weight $w_c J_{\text{CMSN}}$ , delay $d_{\text{C}}$  |  |  |  |  |
| $FF_{C-FSI}$       | Cs           | FSIs                                                                                                     | Random convergent, $C_{\text{Ex}} \rightarrow 1$ , weight $w_c J_{\text{CFSI}}$ , delay $d_{\text{C}}$  |  |  |  |  |
| $INH_{\rm FSI}$    | FSIs         | MSNs                                                                                                     | Random divergent, $1 \rightarrow C_{\text{FSI}}$ , weight $w_s J_{\text{FSI}}$ , delay $d_{\text{FSI}}$ |  |  |  |  |
| INH <sub>MSN</sub> | MSN          | s MSNs                                                                                                   | Random divergent, $1 \rightarrow C_{MSN}$ , weight $w_s J_{MSN}$ , delay $d_{MSN}$                      |  |  |  |  |
| 101010             |              |                                                                                                          | D: Neuron Models                                                                                        |  |  |  |  |
| Name               |              | iaf nsc evn n                                                                                            |                                                                                                         |  |  |  |  |
| Type               |              | Leoky integr                                                                                             | te and fire with exponential past synaptic currents                                                     |  |  |  |  |
| Турс               |              | Leaky megra                                                                                              |                                                                                                         |  |  |  |  |
| Subthresho         | old          | if $(t > t^* + \tau_{ref})$ $\tau_m \frac{dv}{dt} = -V + \frac{I_{syn}(t)}{C_m}$ else $V(t) = V_{reset}$ |                                                                                                         |  |  |  |  |
| dynamics           |              | $I_{\text{arm}} = \sum \sum_{\sigma,\sigma} w_i J_i I_{\text{arm}} (t - s - d)^{\text{m}}$               |                                                                                                         |  |  |  |  |
|                    |              | $-syn \qquad (i) \qquad -t/\tau_{am}$                                                                    |                                                                                                         |  |  |  |  |
|                    |              | $I_{exp}(t) = e^{-\iota_t / t_{exp}}$                                                                    |                                                                                                         |  |  |  |  |
| Spiking            |              | If $V(t-) < \Theta$ OR $V(t+) \ge \Theta$                                                                |                                                                                                         |  |  |  |  |
|                    |              | 1. set $t^* = t$                                                                                         |                                                                                                         |  |  |  |  |
|                    |              | 2. emit spike with time stamp $t^*$                                                                      |                                                                                                         |  |  |  |  |
|                    |              | Membrane potential reset: $V(t) = V_{\text{reset}}$                                                      |                                                                                                         |  |  |  |  |
| Threshold          |              | Fixed threshold                                                                                          |                                                                                                         |  |  |  |  |
| dynamics           |              |                                                                                                          |                                                                                                         |  |  |  |  |
| Name               |              | mat2_psc_exp neuron (Kobayashi et al., 2009)                                                             |                                                                                                         |  |  |  |  |
| Type               |              | Leaky integrate-and-fire with exponential post-synaptic currents and multi-timescale                     |                                                                                                         |  |  |  |  |
| J 1 -              |              | adaptive threshold                                                                                       |                                                                                                         |  |  |  |  |
| Subthreshold       |              | Same as iaf_psc_exp neuron                                                                               |                                                                                                         |  |  |  |  |
| dynamics           |              | Same as the post of hour on                                                                              |                                                                                                         |  |  |  |  |
| Sniking            |              | Same as iaf nsc exp neuron, without membrane potential reset                                             |                                                                                                         |  |  |  |  |
|                    |              | Sume as far_pse_exp neuron, without memorate potential reset                                             |                                                                                                         |  |  |  |  |
| Threshold          |              | $\Theta(t) = \sum_{k} H(t - t_k) + \omega, \qquad H(t) = \sum_{j=1}^{2} \alpha_j \exp(-t/\tau_j),$       |                                                                                                         |  |  |  |  |
| dynamics           |              |                                                                                                          |                                                                                                         |  |  |  |  |
|                    |              |                                                                                                          | E: Input                                                                                                |  |  |  |  |
| Туре               |              | Target 1                                                                                                 | Description                                                                                             |  |  |  |  |
| Poisson            |              | Cs 1                                                                                                     | ndependent for each neuron, rate $\nu_{\text{back}}$ , weight $J_{\text{back}}$                         |  |  |  |  |
| generator          |              |                                                                                                          |                                                                                                         |  |  |  |  |
| Gaussian           |              | Cs                                                                                                       | $f_{a} = \exp(-(i-r)^2/(2\sigma^2))$ ner axis where:                                                    |  |  |  |  |
| current profile    |              |                                                                                                          | Gauss $r_{1} = 25$ runs among Cs $0 < r < 25$ tells the position on axis                                |  |  |  |  |
|                    |              |                                                                                                          | $C_1, 2, \dots, 20$ funs among $C_3, 0 \le x \le 20$ tens the position off data                         |  |  |  |  |
| Law                | 14 0         | of artiles f                                                                                             |                                                                                                         |  |  |  |  |
| LOW DASS IL        | nering       | OF SDIKES Trol                                                                                           | n IVISINS and FSIS                                                                                      |  |  |  |  |

 Table 1. Tabular description of network model.

| A: Connectivity |                        |                                                                                    |  |
|-----------------|------------------------|------------------------------------------------------------------------------------|--|
| Name            | Value                  | Description                                                                        |  |
| $C_{\rm Ex}$    | 6                      | Number of outgoing feed-forward connections received by every striatal             |  |
|                 |                        | neuron from Cs                                                                     |  |
| $C_{\rm FSI}$   | variable               | Number of feed-forward connections from a FSI to MSNs found on a circular          |  |
|                 |                        | area centered on the FSI with radius $R_{FSI}$ , chosen with uniform probability   |  |
|                 |                        | $ P_{\rm FSI} $                                                                    |  |
| $C_{\rm MSN}$   | variable               | Number of recurrent connections from a MSN to other MSNs found on a                |  |
|                 |                        | circular area centered on it with radius $R_{MSN}$ , chosen with Gaussian          |  |
|                 |                        | probability, such that the total probability a standard deviation away is fixed to |  |
|                 |                        | $ P_{\rm MSN} $                                                                    |  |
| $J_{\rm CMSN}$  | 100 pA                 | Amplitude of excitatory connection from a cortical neuron to a MSN                 |  |
| $J_{\rm CFSI}$  | $1.7 \times \text{pA}$ | Amplitude of excitatory connection from a cortical neuron to a FSI                 |  |
| $J_{\rm FSI}$   | variable               | Amplitude of inhibitory connection from a FSI to a MSN, taken from a random        |  |
|                 |                        | uniform distribution on $[-480, -50]$ pA (Koos et al., 2004)                       |  |
| $J_{\rm MSN}$   | variable               | Amplitude of inhibitory connection from a MSN to a MSN, taken from a               |  |
|                 |                        | random uniform distribution on $[-90, -10]$ pA (Koos et al., 2004)                 |  |
| $d_C$           | $1 \mathrm{ms}$        | Synaptic transmission delay from Cs to MSNs and FSIs                               |  |
| $d_{FSI}$       | $1\mathrm{ms}$         | Synaptic transmission delay from FSIs to MSNs                                      |  |
| $d_{MSN}$       | $2\mathrm{ms}$         | Synaptic transmission delay from MSNs to MSNs                                      |  |
| $R_{\rm FSI}$   | $0.1\mathrm{mm}$       | Radius for circular area around FSI to make a connection with MSN                  |  |
|                 |                        | ( <b>Planert et al.</b> , 2010)                                                    |  |
| $R_{\rm MSN}$   | $1 \mathrm{mm}$        | Radius for circular area around MSN to make a connection with another MSN          |  |
| $P_{\rm FSI}$   | 0.74                   | Uniform probability to make a connection between FSI and MSN                       |  |
|                 |                        | ( <b>Planert et al.</b> , 2010)                                                    |  |
| $P_{\rm MSN}$   | 0.2                    | Probability within a Gaussian standard deviation away from MSN to make a           |  |
|                 |                        | connection with another MSN (Planert et al., 2010)                                 |  |
|                 |                        |                                                                                    |  |

## Table 2. Simulation parameters.

| B: Neuron Model     |                   |                                                                       |  |  |
|---------------------|-------------------|-----------------------------------------------------------------------|--|--|
| Name                | Value             | Description                                                           |  |  |
| $	au_{\rm mC}$      | $10 \mathrm{ms}$  | C membrane time constant                                              |  |  |
| $C_{\rm mC}$        | $250 \mathrm{pF}$ | C membrane capacitance                                                |  |  |
| $\Theta_C$          | $-55 \mathrm{mV}$ | C Fixed firing threshold                                              |  |  |
| $V_{0C}$            | $-70 \mathrm{mV}$ | C resting potential                                                   |  |  |
| $V_{\text{reset}C}$ | $V_{0C}$          | C reset potential                                                     |  |  |
| $\tau_{\rm refC}$   | $2\mathrm{ms}$    | C absolute refractory period                                          |  |  |
| $	au_{\rm mM}$      | $5\mathrm{ms}$    | MSN membrane time constant                                            |  |  |
| $C_{\rm mM}$        | $200 \mathrm{pF}$ | MSN membrane capacitance (Gertler et al., 2008)                       |  |  |
| $V_{0M}$            | $-58 \mathrm{mV}$ | MSN resting potential                                                 |  |  |
| $\tau_{\rm refM}$   | $1\mathrm{ms}$    | MSN absolute refractory period                                        |  |  |
| $\tau_{\rm sM}^+$   | $0.2\mathrm{ms}$  | MSN time constant of post-synaptic excitatory currents                |  |  |
| $\tau_{\rm sM}^-$   | $2\mathrm{ms}$    | MSN time constant of post-synaptic inhibitory currents                |  |  |
| $\alpha_{1M}$       | $7.5\mathrm{mV}$  | Weight of MSN multi-timescale adaptive threshold first time constant  |  |  |
| $\alpha_{2M}$       | $1.5\mathrm{mV}$  | Weight of MSN multi-timescale adaptive threshold second time constant |  |  |
| $\omega_M$          | $19 \mathrm{mV}$  | MSN multi-timescale adaptive threshold resting value                  |  |  |

| B: Neuron Model       |                   |                                                                       |  |  |
|-----------------------|-------------------|-----------------------------------------------------------------------|--|--|
| Name                  | Value             | Description                                                           |  |  |
| $	au_{ m mF}$         | $5\mathrm{ms}$    | FSI membrane time constant                                            |  |  |
| $C_{\rm mF}$          | $500 \mathrm{pF}$ | FSI membrane capacitance                                              |  |  |
| $V_{0F}$              | $-68 \mathrm{mV}$ | FSI resting potential                                                 |  |  |
| $	au_{\mathrm{refF}}$ | $2\mathrm{ms}$    | FSI absolute refractory period                                        |  |  |
| $\tau_{\rm sF}^+$     | $0.3\mathrm{ms}$  | FSI time constant of post-synaptic excitatory currents                |  |  |
| $\tau_{\rm sF}^-$     | $2\mathrm{ms}$    | FSI time constant of post-synaptic inhibitory currents                |  |  |
| $\alpha_{1F}$         | $10 \mathrm{mV}$  | Weight of FSI multi-timescale adaptive threshold first time constant  |  |  |
| $\alpha_{2F}$         | $0.2\mathrm{mV}$  | Weight of FSI multi-timescale adaptive threshold second time constant |  |  |
| $\omega_F$            | 10 mV             | FSI multi-timescale adaptive threshold resting value                  |  |  |

| C: Input              |                     |                                                           |  |  |
|-----------------------|---------------------|-----------------------------------------------------------|--|--|
| Name                  | Value               | Description                                               |  |  |
| $\nu_{\mathrm{back}}$ | $10^4  \mathrm{Hz}$ | Background independent Poisson rate to Cs                 |  |  |
| $J_{\text{back}}$     | 20 pA               | Amplitude of background independent Poisson process to Cs |  |  |
| $I_{\text{Gauss}}$    | 1 nA                | Maximum amplitude for Gaussian current profile            |  |  |
| $\sigma$              | 2                   | Standard deviation of Gaussian current profile            |  |  |

| D: Supervised learning                                       |                   |  |
|--------------------------------------------------------------|-------------------|--|
| Parameter                                                    | Value             |  |
| Time step                                                    | 0.1 ms            |  |
| Learning rate                                                | 0.1               |  |
| Runtime per step                                             | $300 \mathrm{ms}$ |  |
| Training samples per step                                    | 50 after 50 ms    |  |
| Time in current position to take sample for advocated action | $50 \mathrm{ms}$  |  |
| Low pass filter decay                                        | 30 ms             |  |

## REFERENCES

- Gertler, T. S., Chan, C. S., and Surmeier, D. J. (2008), Dichotomous anatomical properties of adult striatal medium spiny neurons, *The Journal of Neuroscience*, 28, 43, 10814–10824, doi:10.1523/JNEUROSCI. 2660-08.2008
- Kobayashi, R., Tsubo, Y., and Shinomoto, S. (2009), Made-to-order spiking neuron model equipped with a multi-timescale adaptive threshold., *Frontiers in computational neuroscience*, 3, July, 9, doi:10.3389/ neuro.10.009.2009
- Koos, T., Tepper, J. M., and Wilson, C. J. (2004), Comparison of ipscs evoked by spiny and fastspiking neurons in the neostriatum, *The Journal of Neuroscience*, 24, 36, 7916–7922, doi:10.1523/ JNEUROSCI.2163-04.2004
- Planert, H., Szydlowski, S. N., Hjorth, J. J. J., Grillner, S., and Silberberg, G. (2010), Dynamics of synaptic transmission between fast-spiking interneurons and striatal projection neurons of the direct and indirect pathways, *The Journal of Neuroscience*, 30, 9, 3499–3507, doi:10.1523/JNEUROSCI. 5139-09.2010