

Supplementary Material

A Three Dimensional Dual-band Terahertz Perfect Absorber as a Highly Sensitive Sensor

Wei Yin^{1,2}, Zhonglei Shen², Shengnan Li², Liuyang Zhang^{1,2,*} and Xuefeng Chen²

¹Xi'an Jiaotong University Shenzhen Academy, Nanshan District, Science and Technology Park, Shenzhen, People's Republic of China

²State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, People's Republic of China

* Correspondence:

Liuyang Zhang liuyangzhang@xjtu.edu.cn

1 Supplementary Figures

Figure S1 (A) The schematic diagram of the incident angle of terahertz waves for the planar absorber. (B) Absorption spectra with different polarization angles ϕ under normal incidence. Absorption spectra under different incident angles θ under (C) TE mode and (D) TM mode.

We have investigated the impact of polarization states and incident angles on the planar absorber as shown in **Figure S1**. The spectra variation with respect to the polarization angle and the incident angle under TE mode and TM mode exhibits considerable consistency with the meta-absorber. Both absorption spectra for different polarization angles demonstrate their independence to the polarization states as shown in **Figure S1B**. However, as shown in **Figure S1C** and **Figure S1D**, the absorption spectra regarding the incident angles under TE mode and TM mode between two absorbers are quite different in the absorption amplitudes and the frequency shift.