
Original Research Articles Pages 1–2

Supplementary Material - Fast Parallel Image Registration
on CPU and GPU for Diagnostic Classification of
Alzheimer’s Disease
Denis P. Shamonin 1, Esther E. Bron 2, Boudewijn P.F. Lelieveldt1, Marion
Smits3, Stefan Klein2, and Marius Staring 1∗, for the Alzheimer’s Disease Neuroimaging
Initiative†

1 Leiden University Medical Center, Department of Radiology, Leiden, The Netherlands
2 Erasmus MC, Biomedical Imaging Group Rotterdam, Departments of Medical Informatics and
Radiology, Rotterdam, The Netherlands
3 Erasmus MC, Department of Radiology, Rotterdam, The Netherlands

Table 1. Details of the system used for the timing tests.

OS Windows 7, 64 bit
CPU Intel Xeon E5-1560, 6 cores @ 3.2 GHz
GPU NVidia Geforce GTX 780

compiler Microsoft Visual Studio 2010
OpenCL version OpenCL 1.1, CUDA 5.5, driver 320.57

1 INTRODUCTION
In the paper all performance results are obtained on an 8 core PC
running at 2.4 GHz with an NVidia Geforce GTX 480 graphical
card. In this supplement we provide results obtained on a modern
system (late 2013), with 6 cores running at 3.2 GHz and an NVidia
Geforce GTX 780 GPU. Details of this system are given in Table
1. Hyper-threading is enabled on this system, unlike on the system
from the paper (older system).

2 RESULTS ON MODERN SYSTEM

2.1 Parallelization and optimization on the CPU
Results for the accelerations implemented on the CPU are given in
Figure 1 and 2 for the modern system. They correspond to Figure 4
and 5 in the paper.

Figure 1 displays the performance results for MI, 2000 samples,
N = 5 ·104, showing the reduction in runtime per iteration, the
speedup factor and the parallelization efficiency. It can be seen
that using more threads steadily increases the performance, until T
matches the number of CPU cores. Further increasing paralleliza-
tion decreases performance. The efficiency plot shows that although

∗to whom correspondence should be addressed
†Data used in preparation of this article were obtained from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) database (adni.loni.ucla.edu).
As such, the investigators within the ADNI contributed to the design
and implementation of ADNI and/or provided data but did not par-
ticipate in analysis or writing of this report. A complete listing
of ADNI investigators can be found at: http://adni.loni.ucla.edu/wp-
content/uploads/how to apply/ADNI Acknowledgement List.pdf

Table 2. Results of the multi-resolution pyramid filter. Timings shown are
for all four levels in total.

image size resize tCPU tGPU F nRMSE

100x100x100 off 0.04 0.02 1.8 0.69 ×10−6

resampler 0.05 0.03 1.6 0.72 ×10−6

shrinker 0.04 0.02 1.9 0.70 ×10−6

256x256x256 off 0.56 0.21 2.7 0.91 ×10−6

resampler 0.69 0.32 2.2 0.91 ×10−6

shrinker 0.50 0.21 2.4 0.91 ×10−6

512x512x256 off 2.75 0.87 3.2 0.75 ×10−6

resampler 3.72 1.50 2.5 0.54 ×10−6

shrinker 2.51 0.81 3.1 0.75 ×10−6

the performance increases with increasing T , the benefits are gradu-
ally diminished. An efficiency of 80-90% (Figure 1c) was obtained
for 6 threads, which is higher than the efficiency obtained on the
older system (60-70% for 8 threads). Comparing the columns ’b’
and ’1’ we can see that the general optimizations already reduce
runtime from 21 ms to 15 ms per iteration (R2). Overall, the image
registration was accelerated by a factor of 5-6x.

Figure 2 shows the experimental results when varying the num-
ber of samples |˜ΩF |, parameters length N and cost function type.
The speedup is higher when using 20000 samples instead of 2000
(Figure 2a), although of course the former is ten times as slow, like
was seen on the older system. Unlike the older system, the modern
system still benefitted from adding threads beyond the number of
physical cores. This is attributed to the use of hyper-threading. Note
that hyper-threading only showed beneficial for sufficiently long
iteration times. Figure 2b shows that speedup decreases when the
number of parameters is large (R2), like the older system. Finally,
Figure 2c shows that all metrics almost equally well benefit from
parallelization.

Overall, the accelerations reduced the registration runtimes from
about a minute to ∼10s (|˜ΩF | = 2000, N = 5 · 104), excluding
optimization step size computation (15-20s) of the ASGD optimizer.

2.2 Parallelization on the GPU

1

D.P. Shamonin et al.

6 12 6 12 6 12

ru
nt

im
e

(m
s)

0

5

555

10

15

20

25

bbb 111 222 333 444

R0 R1 R2

(a) Runtime per iteration

6 12 6 12 6 12

6

7

av
er

ag
e

sp
ee

du
p

0

5

555 bbb

1

111

2

222

3

333

4

444

8

R0 R1 R2

(b) Speedup factor F

6 12 6 12 6 12

0.2

0.4

0.6

0.8

1.2

1.4

1.6

ef
fic

ie
nc

y

0
555 bbb

1

111 222 333 444
R0 R1 R2

(c) Efficiency E

Fig. 1. Registration performance as a function of the number of threads.
Ri denotes the resolution number, b refers to the baseline un-accelerated
algorithm, and the numbers 1 - 16 refer to the number of threads used when
running the parallel accelerated algorithm. The blue line shows ideal linear
speedup. Results are shown for MI, N = 5·104, |˜ΩF | = 2000.

2.2.1 Gaussian image pyramids The speedup factors and accu-
racy results for the Gaussian pyramid computation for the modern
system are shown in Table 2. This table corresponds to Table 2
from the paper. The imprecision as measured by the nRMSE was
quite small (< 10−6), meaning that the the CPU and GPU returns
almost exactly identical. Small speedup factors of about 2-3 were
measured.

2.2.2 Image resampling Detailed results for the resampling step
for the modern system are shown in Table 3 and Figure 3. They
correspond to Table 3 and Figure 6 from the paper.

6 12 6 12 6 12

6

7

9

av
er

ag
e

sp
ee

du
p

0

5

555 bbb

1

111

2

222

3

333

4

444

8

R0 R1 R2

(a) MI, N = 5·104, |˜ΩF | = 2000 (red) vs |˜ΩF | = 20000 (yellow)

6 12 6 12 6 12

6

7

av
er

ag
e

sp
ee

du
p

0

5

555 bbb

1

111

2

222

3

333

4

444

8

R0 R1 R2

(b) MI, |˜ΩF | = 2000, N = 5·104 (red) vs N = 3·105 (yellow)

6 12 6 12 6 12

6

7

av
er

ag
e

sp
ee

du
p

0

5

555 bbb

1

111

2

222

3

333

4

444

8

R0 R1 R2

(c) |˜ΩF | = 2000, N = 5·104, MSD (green) vs NC (yellow) vs MI (red)

Fig. 2. Registration performance as a function of the number of threads.
Ri denotes the resolution number, b refers to the baseline un-accelerated
algorithm, and the numbers 1 - 16 refer to the number of threads used when
running the parallel accelerated algorithm. The blue line shows ideal linear
speedup.

The GPU results for resampling are the same in terms of nRMSE
to the output produced by the ITK CPU code. There are no floating
point differences on the modern NVidia GTX 780 graphical card,
unlike reported on the older system. Speedups were obtained in the
range 15 - 88x using more complex transformations. Using a B-
spline interpolator and transform on a larger image, a common use-
case, the execution time was 29 s on the 6 core CPU, while with the
GPU this was reduced to <0.5 s.

2

Supplementary Material - Fast Parallel Image Registration for the Detection of Alzheimer’s Disease

Table 3. Results of the resampling filter. Timings are shown in seconds. sz
denotes image size. First, second and third number in each column denote the
result for the nearest neighbor (NN), linear (L) and B-spline (B) interpolator,
respectively. T1 − T5 are the composite transforms T , A, B, A ◦ B and
T◦A◦B◦R◦S, respectively.

sz T tCPU tGPU F nRMSE×10−3

NN L B NN L B NN L B NN L B

10
0x

10
0x

10
0 T1 0.00 0.01 0.15 0.00 0.01 0.01 1 2 13 0.00 0.00 0.00

T2 0.00 0.01 0.14 0.00 0.00 0.01 1 2 11 0.00 0.00 0.00
T3 0.30 0.34 0.49 0.01 0.01 0.01 45 51 37 0.00 0.00 0.00
T4 0.33 0.34 0.47 0.01 0.01 0.01 39 42 33 0.00 0.00 0.00
T5 0.26 0.27 0.37 0.01 0.01 0.01 31 31 25 0.00 0.00 0.00

25
6x

25
6x

25
6 T1 0.06 0.14 2.55 0.03 0.03 0.11 2 4 24 0.00 0.00 0.00

T2 0.07 0.18 2.46 0.03 0.03 0.09 2 6 26 0.00 0.00 0.00
T3 4.79 4.89 7.28 0.06 0.06 0.12 80 81 59 0.00 0.00 0.00
T4 5.20 5.11 7.19 0.06 0.06 0.13 88 81 57 0.00 0.00 0.00
T5 3.78 3.87 5.85 0.06 0.06 0.12 65 64 48 0.00 0.00 0.00

51
2x

51
2x

25
6 T1 0.21 0.54 10.8 0.12 0.10 0.37 2 5 29 0.00 0.00 0.00

T2 0.24 0.53 11.6 0.10 0.11 0.37 2 5 31 0.00 0.00 0.00
T3 18.2 18.5 28.6 0.22 0.22 0.48 81 84 60 0.00 0.00 0.00
T4 18.6 18.2 28.7 0.23 0.22 0.49 83 82 59 0.00 0.00 0.00
T5 15.5 15.5 25.1 0.21 0.23 0.48 74 66 52 0.00 0.00 0.00

T A B A◦B T◦A◦B◦R◦S

100× 100× 100 256× 256× 256 512× 512× 256
0

10

20

30

40

50

60

80

70

90

(a) Nearest neighbor interpolator

100× 100× 100 256× 256× 256 512× 512× 256
0

10

20

30

40

50

60

80

70

(b) Linear interpolator

100× 100× 100 256× 256× 256 512× 512× 256
0

10

20

30

40

50

60

(c) B-spline interpolator

Fig. 3. Speedup factors F for the GPU resampling framework.

3

