Supplementary Table 1: Parameters of VNS and major outcomes of treatment in clinical studies.

Condition/Study	Type of VNS device	Current	Duty cycle	Outcome			
Heart (atrial fib TREAT-AF Paroxysmal AF (Stavrakis et al., 2020)	rillation) Auricular VNS: ear clip attached to the tragus	20 Hz, 1 mA below the discomfort threshold	4.2%: 1 h daily over 6 months	6 months: the median AF burden was 85% lower in the active arm (n=26) compared with the control arm (n=27), increase in HRV; TNF-α decreased by 23%.			
<u>Crohn disease</u> <u>NCT01569503</u> (Bonaz et al., 2016)	Left VN: helical cuff Cyberonics electrode (model 302)	1.25 mA, 500 μs pulse, 10 Hz	9%: 30 s on, 300 s off	5 out of 9 patients showed full clinical-biological- endoscopic remission; increased HRV; improvement in C-reactive protein values.			
<u>NCT02311660</u> (Bonaz et al., 2016)	Left VN: helical cuff Cyberonics electrode (model 302)	2 mA, 250 μs pulse, 10 Hz	9%: 30 s on, 300 s off	At 16 weeks, improvements in endoscopic scores and HRV in 6 out of 8 patients.			
Rheumatoid arthritis							
<u>NCT01552941</u> (Koopman et al., 2016)	Left VN: patients with VNS for epilepsy	1-2 mA, 500 μs pulse, 20 Hz	0.07-0.28%: 60 s 1- 4 times daily	In 17 RA patients, decreased TNF- α , IL-1 β , and IL-6 production and significantly improved clinical signs and symptoms for 84 days.			
Asthma							
VNS for acute exacerbation of asthma (Miner et al., 2012)	Percutaneous stimulation of right VN	Median peak stim at 4.4 V (1- 11.6 V range), 200 µs pulse, 25 Hz	One-off stim for 60 min	In 25 patients, rapid and progressive improvement of forced expiratory volume and perceived dyspnea.			
Experimental ARDS							
Venom-induced lung injury: MBT and OA models (Akella and Deshpande, 2015)	Bilateral stimulation of transected vagi: efferent fibers only	10 V, 1 ms pulse, 5 Hz	5 min stim before venom administration, and repeated for 5 min 10 min after injection	Extended survival of MBT model but no effect on OA model.			
Rats, ventilator- induced lung injury (Brégeon et al., 2011)	Bilateral efferent VNS (transected vagi): bipolar platinum electrodes	5–10 V, 2 ms pulse, 5–10 Hz	50%: 10 min on, 10 min off	Decreased inflammation in alveolar tissue (no lymphocyte infiltration), IL- 6 concentration decreased both locally (lung extracts) and systemically (plasma). This was attenuated by alpha7 nicotinic ACh receptor antagonists.			
Rats and mice, ventilator- and hemorrhagic shock induced lung injury (Dos Santos et al., 2011)	Bilateral stimulation of distal end of transected vagi Bipolar hook electrodes	1 V, 2 ms pulse, 5 Hz	20 min total	IL-6 values improved.			

Two-hit model in rats: sepsis and mechanical damage to the lungs (ventilation at 15 cmH2O) (Kox et al., 2012)	Vagi intact, bilateral stimulation of both afferent and efferent fibers.	5 V, 2 ms pulse, 5 Hz	3 min total	No effect on pulmonary inflammation.
Acid-induced acute lung injury in rabbits (Liu et al., 2017)	Right vagus nerve (intact – both afferents and efferents)	5 V, 2 ms pulse, 1 Hz	15 min total after acid aspiration	Decreased levels of plasma IL-10 and pulmonary leucocyte infiltration; improved pulmonary function.

Supplementary References:

- Akella, A, and Deshpande, SB (2015). Vagal efferent stimulation protects against Mesobuthus tamulus venom-induced acute respiratory distress syndrome in rats. *Toxicon* 108, 189-201. doi: 10.1016/j.toxicon.2015.10.013
- Bonaz, B, Sinniger, V, Hoffmann, D, Clarençon, D, Mathieu, N, Dantzer, C, et al. (2016). Chronic vagus nerve stimulation in Crohn's disease: a 6-month follow-up pilot study. *Neurogastroenterology & Motility* 28, 948-953. doi: 10.1111/nmo.12792
- Brégeon, F, Xeridat, F, Andreotti, N, Lepidi, H, Delpierre, S, Roch, A, et al. (2011). Activation of Nicotinic Cholinergic Receptors Prevents Ventilator-Induced Lung Injury in Rats. *PLOS* ONE 6, e22386. doi: 10.1371/journal.pone.0022386
- Dos Santos, CC, Shan, Y, Akram, A, Slutsky, AS, and Haitsma, JJ (2011). Neuroimmune Regulation of Ventilator-induced Lung Injury. *American Journal of Respiratory and Critical Care Medicine* 183, 471-482. doi: 10.1164/rccm.201002-0314OC
- Koopman, FA, Chavan, SS, Miljko, S, Grazio, S, Sokolovic, S, Schuurman, PR, et al. (2016). Vagus nerve stimulation inhibits cytokine production and attenuates disease severity in rheumatoid arthritis. *Proceedings of the National Academy of Sciences* 113, 8284. doi: 10.1073/pnas.1605635113
- Kox, M, Vaneker, M, Van Der Hoeven, JG, Scheffer, G-J, Hoedemaekers, CW, and Pickkers, P (2012). Effects of Vagus Nerve Stimulation and Vagotomy on Systemic and Pulmonary Inflammation in a Two-Hit Model in Rats. *PLOS ONE* 7, e34431. doi: 10.1371/journal.pone.0034431
- Liu, Y, Tao, T, Li, W, and Bo, Y (2017). Regulating autonomic nervous system homeostasis improves pulmonary function in rabbits with acute lung injury. *BMC pulmonary medicine* 17, 98-98. doi: 10.1186/s12890-017-0436-0
- Miner, JR, Lewis, LM, Mosnaim, GS, Varon, J, Theodoro, D, and Hoffmann, TJ (2012). Feasibility of Percutaneous Vagus Nerve Stimulation for the Treatment of Acute Asthma Exacerbations. *Academic Emergency Medicine* 19, 421-429. doi: 10.1111/j.1553-2712.2012.01329.x
- Stavrakis, S, Stoner, JA, Humphrey, MB, Morris, L, Filiberti, A, Reynolds, JC, et al. (2020). TREAT AF (Transcutaneous Electrical Vagus Nerve Stimulation to Suppress Atrial Fibrillation): A Randomized Clinical Trial. JACC Clin Electrophysiol 6, 282-291. doi: 10.1016/j.jacep.2019.11.008