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1 Supplementary Results 

1.1. Genome-wide Identification of PKs in Sugarcane and Sorghum 

All Saccharum spontaneum (Ssp) and Sorghum bicolor (Sbi) protein sequences available were 

aligned against kinase domains using HMMER, and 3,729 (Ssp) and 1,910 (Sbi) different sequences 

showed significant correspondences. To avoid redundancies, we removed Sbi isoforms, and we 

discarded 810 (Ssp) and 66 (Sbi) sequences with less than 50% of minimum domain coverage to 

avoid atypical kinases or pseudogenes (Lehti-Shiu and Shiu, 2012). Ultimately, we identified 2,919 

putative Ssp and 1,210 putative Sbi protein kinases (PKs) (Supplementary Tables 3 and 4). The data 

indicate that some PKs (228 Ssp and 49 Sbi PKs) contained multiple kinase domains. 

The genome-wide identification of Ssp PKs was performed without prior knowledge of allelic 

relationships among genes; however, due to the allele specificity of the Ssp genome, we also 

evaluated their gene model (GM) organization, in which different allele copies and paralog and 

tandem duplications are associated with one representative GM. The 2,919 Ssp PKs corresponded to 

1,345 different GMs (∼5% higher than that obtained with Sbi PKs). By analyzing the GM description 

file, we identified 3,717 different gene configurations for these 1,345 GMs, which exceeded the 

number of kinases initially detected (2,919). We verified that this numerical divergence was related 
only to the presence of tandem and paralogous duplications, which were not classified as PKs with 

the original identification methodology. When the number of PKs identified solely from different 

allele copies was verified, 2,575 PKs were identified both by the original identification method and 

when checking the GM file. 

PKs were further classified into groups and subfamilies according to the top-scoring correspondence 

to hidden Markov models (HMMs) of 25 plant species (Lehti-Shiu and Shiu, 2012). This process 

resulted in the identification of 119 and 120 kinase subfamilies in Ssp and Sbi, respectively 

(Supplementary Tables 5 and 6), corresponding to 20 different groups. This classification was 

confirmed by phylogenetic trees (Supplementary Figures 1-3) estimated based on Sbi PKs, Ssp PKs 

and all PKs from the two species. In the dendrogram, only seven sequences in Ssp and two sequences 

in Sbi did not cluster with any other subfamily; instead, these were included in an "Unknown" 

category and considered probable novel gene kinase subfamilies. The comparison of Ssp GMs and 

Sbi PKs revealed that the number and relative proportion of proteins in each group were similar 

(Supplementary Table 7), and the same values were obtained for 40% of the subfamilies. 

The comparison of the Sbi and Ssp kinomes alone reveals that their subfamily composition profiles 

are very similar. The only subfamily found exclusively in Sbi was the pancreatic eukaryotic initiation 

factor-2alpha kinase (PEK_PEK). Although PEKs are responsible for the phosphorylation of 

eukaryotic translation initiation factor 2 subunit alpha (eIF2α) (Immanuel et al., 2012), each 

subfamily is involved in the response to different stresses (Donnelly et al., 2013). The PEK_GCN2 

subfamily was found in both species, and its activation is related to amino acid and glucose 

deprivation (Yang et al., 2000; Deval et al., 2009; Baker et al., 2012), viral infection (Berlanga et al., 

2006; Krishnamoorthy et al., 2008) and UV irradiation (Grallert and Boye, 2007). PEK_PEK kinases 
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are particularly activated during endoplasmic reticulum (ER) stress (Baker et al., 2012) and are 

homologous to inositol-requiring kinase 1 (IRE1) proteins (Urano et al., 2000), which are also 

activated in response to ER stress (Liu et al., 2007a) and were found in both the Sbi and Ssp kinomes. 

The most abundant group in both species was the receptor-like kinase (RLK)-Pelle group, which 

accounted for ∼70% of the PKs with leucine-rich repeat (LRR), RLCK, DLSV, L-LEC and SD-2b 

subfamilies having the most pronounced compositions. In the cotton kinome, for instance, LRR 

subfamilies have been suggested to be significantly associated with growth, development and defense 

responses (Yan et al., 2018). In Sbi, the LRR family has broadly been linked with the response to 

several types of stress (Kawahigashi et al., 2011; Azzouz-Olden et al., 2020; Filiz and Kurt, 2020), 

playing roles related to signal transduction in response to extracellular signals (Azzouz-Olden et al., 

2020; Dhaka et al., 2020; Vikal et al., 2020), pollen development (Dhaka et al., 2020), metabolism, 

and chaperone functions (Vikal et al., 2020). In Ssp, this family has been associated with defense 

response processes (Xu et al., 2018; Yang et al., 2019), hormone metabolism (Chen et al., 2019), 

cellulose and lignin biosynthesis (Kasirajan et al., 2018), and sucrose synthesis (Vicentini et al., 

2009). In addition to the remarkably important LRR family, the RLCK, DLSV, L-LEC, and SD-2b 

families are also involved in diverse essential mechanisms. Because RLCK members do not contain 

extracellular and transmembrane domains (Gao and Xue, 2012; Zulawski et al., 2014), these proteins 

are generally involved in more specific processes (Jurca et al., 2008). In addition to disease 

resistance, RLCKs have been shown to be related to growth, immune responses (Yan et al., 2018; 

Zhu et al., 2018a), and vegetative development (Jurca et al., 2008; Gao and Xue, 2012). Together 

with RLCK family members, DLSV members were found to be differentially expressed in soybean 

tissues in stress experiments (Liu et al., 2015). The DLSV family includes Domain of Unknown 

Function 26 (DUF26), SD-1, LRR-VIII, and VMA-like proteins (Lehti-Shiu and Shiu, 2012), which 

mediate the control of stress responses and development (Vinagre et al., 2006; Vaattovaara et al., 

2019), with some members being associated with signaling pathways regulating the responses to cold 

and infection (Yan et al., 2017). L-LEC and SD-2b have established associations with the defense 

responses (Chen et al., 2006; Wei et al., 2014) and with stomatal immunity regulation via an L-LEC 

member (Desclos-Theveniau et al., 2012) and with self-incompatibility via SD-2b (Stein et al., 1991). 

The essentiality of mechanisms shared by these families indicates their functional importance among 

plants (Vaattovaara et al., 2019) and demonstrates their importance in the expansion and maintenance 

of the Sbi and Ssp kinomes. 

1.2. Characterization of PKs 

Ssp and Sbi PKs were distributed across all Ssp and Sbi chromosomes (Figures 2A and 2B). Sbi PK 

quantities ranged from 67 (5.54%) on chromosome 7 to 184 (15.21%) on chromosome 3 

(Supplementary Table 8). In Ssp (Supplementary Table 9), quantities across haplotypes were similar, 

and in all of them, chromosomes 2 and 6 had the most and fewest PKs, respectively. The 

accumulation of PKs generally increased with increases in chromosomal length. 

The intron distribution differed between Ssp and Sbi PKs (Supplementary Tables 10 and 11) and did 

not exhibit a clear distribution pattern on a specific chromosome (Figures 2A and 2B). A large 

number of PKs were intronless (154 in Sbi and 329 in Ssp). Additionally, all identified PKs were 

analyzed against the Pfam database to retrieve related nonkinase domains. In Sbi, we identified 70 

additional domains (Supplementary Table 12) distributed across 662 PKs (Supplementary Table 13). 

Interestingly, none of these additional domains were found in the 49 PKs containing multiple kinase 

domains (Supplementary Table 14). In Ssp, we identified 168 additional domains (Supplementary 
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Table 15) across 1,423 PKs (Supplementary Table 16). The 228 Ssp PKs with multiple kinase 

domains (Supplementary Table 17) also did not present nonkinase domains. These additional 

domains were similar in Sbi and Ssp PKs (60 domains in common). 

A full Gene Ontology (GO) annotation of Sbi and Ssp PKs was performed with Blast2GO 

(Supplementary Tables 18 and 19). In Sbi, we found 1,581 different GO terms related to 18,320 

correspondences among the PKs. These terms were separated into 3,857 (21.05%) terms related to 

the cellular component GO category, 3,752 (20.48%) to the molecular function category, and 10,711 

(58.47%) to the biological process category. In Ssp, we found more categories (1,875) and more 

correspondences (44,582) due to the larger size of the Ssp kinome. However, the proportion of GO 

terms was similar: 9,193 (20.62%) in the cellular component category, 9,429 (21.15%) in the 

molecular function category, and 25,960 (58.23%) in the biological process category. This clear 

similarity can be observed in pie charts in Figures 2C and 2D. Using REViGO software, treemaps 

were generated to summarize the GO categories related to biological processes (Supplementary 

Figures 5A and 5B); the most abundant biological processes were related to protein phosphorylation, 

defense response and cellular development. 

The annotation of PKs based on GO terms corroborated the accuracy of their identification. For 

instance, in both the Ssp and Sbi kinomes, the five most frequently appearing annotated GO terms 

were (I) defense response to oomycetes, (II) protein serine/threonine phosphorylation, (III) binding, 

(IV) plasma membrane and (V) pollen development (Figures 2C and 2D). Indeed, terms (II) and (III) 

exhibit the most obvious associations, as PKs catalyze the phosphorylation of proteins by transferring 

terminal phosphate groups from ATP to serine, threonine or tyrosine residues in other proteins—a 

process that involves the binding of PKs to their targets (Hunter, 1995). A large portion of eukaryotic 

plant kinases are grouped into the RLK superfamily and are thus located in the plasma membrane, 

which explains term (IV). Additionally, PKs have been frequently shown to participate in responses 

to infection by various oomycetes (Hall et al., 2007; Blanco et al., 2008; Hok et al., 2011, 2014; 

Carella et al., 2019) and in pollen development (Zhang et al., 2001; Xu et al., 2011; Lafleur et al., 

2015; Chen et al., 2016; Li et al., 2018), explaining terms (I) and (V). This finding was maintained 

when the annotation results were summarized in treemaps (Supplementary Figures 5A and 5B); first, 

terms associated with protein phosphorylation were strongly represented in the kinomes of both 

species. This summarization also highlights the broad presence of terms in which plant PKs are 

widely and historically known to be involved, such as defense responses (Chen et al., 2006; Tena et 

al., 2011; Wei et al., 2014; Xu et al., 2018; Yang et al., 2019), cellular development (Jin et al., 2002; 

Matschi et al., 2013; Komis et al., 2018), regulation of stomatal closure (Li et al., 2000; Mustilli et 

al., 2002; Lee et al., 2016) and development of leaves and pollen (Roe et al., 1993; Benjamins et al., 

2001; Khew et al., 2015). 

For Sbi PKs, we investigated the possible occurrence of alternative splicing (AS). One hundred Sbi 

kinase genes were found to undergo associated AS, and a GO analysis of the most frequent biological 

processes associated with these genes (Supplementary Figure 5C) showed changes in the most 

frequent categories compared with those obtained when considering the entire dataset of PK-related 

terms. The most frequent category was defense response, which was the third most frequent in the 

entire set of Sbi PK GO terms. Additionally, programmed cell death was included as a category 

instead of cell growth. For this species, we also investigated 100 PKs that are possibly subject to AS, 

a process that leads to the production of different mRNA isoforms from a single gene, which expands 

the functional diversity of the gene. AS is extensively reported to regulate plant development, 

circadian clocks and responses to environmental stimuli, particularly stresses (Filichkin et al., 2015; 
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Shang et al., 2017). When only alternatively spliced PKs were annotated and summarized 

(Supplementary Figure 5C), we observed similarities to the categories associated with all GO terms 

in the two species analyzed. One notable difference was the inclusion of a category that included 

terms related to programmed cell death, a stress-triggered process (Danon et al., 2000) controlled by 

PKs (Tang et al., 2005; Liu et al., 2007b; Lachaud et al., 2013; Wrzaczek et al., 2014; Yadeta et al., 

2016). A few PKs that function in response to biotic and abiotic stresses have been shown to undergo 

AS (Rostoks et al., 2004; Koo et al., 2007; Lin et al., 2010), which could explain the high frequency 

of this category with alternatively spliced PKs. 

Additionally, we analyzed the ratio of synonymous to nonsynonymous mutations (Ka/Ks), which is 

used to determine the type of selection acting on a gene (Zhang et al., 2006). We found that in the 

two kinomes the large majority of segmentally duplicated PKs were under negative selection 

(Ka/Ks<1), while a smaller percentage were under positive selection (Ka/Ks>1), and very few were 

under neutral selection (Ka/Ks=1). This pattern is similar to those observed in the soybean, grapevine 

and pineapple kinomes (Liu et al., 2015; Zhu et al., 2018a, b) and to those reported in smaller gene 

families in Ssp (Wang et al., 2019b; Li et al., 2020) and sorghum (Malviya et al., 2016; Anand et al., 

2017; Mittal et al., 2017). 

We also explored the presence of signal peptides and transmembrane helices in the PKs and 

investigated their estimated molecular weights (MWs), theoretical isoelectric points (pIs), and 

subcellular localization (Supplementary Tables 20 and 21). Among the Sbi PKs, ∼40% were 

predicted to contain signal peptides (Figure 2A), whereas ∼30% of the Ssp PKs contained these 

peptides (Figure 2B). Most Ssp PKs (∼59%) did not contain transmembrane helices, whereas 50% of 
Sbi PKs did not (Figures 2C and 2D). The results indicated high divergence among the methods for 

predicting subcellular localization; thus, we considered only the predictions identified by a consensus 

of at least two of the three tools used. The localization of 1,425 Ssp and 616 Sbi PKs was predicted to 

be the chloroplast, cytoplasmic, extracellular, mitochondrial, nuclear or membrane regions (Figures 

2C and 2D). The most frequently identified localization was the membrane, as also indicated by the 

high frequency of the membrane GO term. 

Various attributes of PKs—number of introns, pIs, MWs, presence of signal peptides and 

transmembrane helices, duplications, and domain composition—are summarized at subfamily level 

in Supplementary Tables 22 (Sbi) and 23 (Ssp). To characterize kinase subfamily gene structures, we 

first calculated the mean quantity of introns per kinase in each subfamily and then determined the 

standard deviation and coefficient of variation. Several subfamilies contained only one representative 

gene (30 in Sbi and 33 in Ssp). In Ssp, some of these subfamilies exhibit high intronic divergences in 

gene allelic copies (with coefficients of variation ranging from 0 to ∼141%). The analysis of only the 
subfamilies with more than one member revealed increased coefficients of variation (ranging from 0 

to ∼241%), corresponding to significant discrepancies in the gene organization within kinase 

subfamilies. By filtering the subfamilies with a maximum coefficient of variation of 20% and at least 

two PKs, we identified 37 Sbi and 12 Ssp subfamilies with a more cohesive structure, but most 

included only a few PKs. 

The protein properties across kinase subfamilies did not exhibit considerable differences. Based on a 
maximum coefficient of variation of 20%, 13 and 15 subfamilies in Sbi and Ssp, respectively, 

presented considerable variations in the pI. The MW exhibited higher variability in Ssp than in Sbi 

(66 subfamilies with more diverse values, in contrast to 20 in Sbi). Regarding the presence of signal 
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peptides, all PKs in 18 Sbi PK subfamilies contained these subsequences; the subfamilies with the 

most members were RLK-Pelle_LRR-V (12 members) and RLK-Pelle_WAK_LRK10L-1 (7 

members). In Ssp, all PKs in only eight subfamilies contained signal peptides, with the inositol-

requiring kinase 1 (IRE1) and RLK-Pelle_RLCK-X subfamilies each containing five members. 

Similarly, these highlighted subfamilies also contained transmembrane helices across their proteins. 

We also performed several in silico analyses to evaluate the molecular characteristics of the PKs 

identified in the two species. As reported for grapevine (Zhu et al., 2018b), the pIs and MWs of the 

PKs were generally similar within subfamilies in Ssp and Sbi; these results were expected, as these 

properties are estimated based on the protein sequence. We observed, however, that Ssp contained 

many more PK subfamilies with significant variation in the MW than did Sbi, possibly indicating a 

broader diversity of kinases in Ssp. After verifying the presence of signal peptides in the PK 

sequences, we estimated that ∼40% of Sbi kinases contained signal peptides, in contrast with ∼30% 

in Ssp. This percentage is very similar to that in maize, where ∼30% of PKs contain these signal 
sequences (Wei et al., 2014). Regarding the subcellular localization of the PKs, we noted high 

divergence in the results obtained with the three machine learning-based methods (Yu et al., 2006; 

Horton et al., 2007; Sperschneider et al., 2017), which have unique advantages. Therefore, the 

discordant localizations may not be reliable, and we decided to use a consensus approach, 

considering only the results consistent between at least two of the tools. Although this process did not 

allow the subcellular localization of all PKs to be estimated, it did allow us to determine a more 

consistent predictive set for categorizing the Sbi and Ssp kinomes. 

To complement the protein properties observed in kinase subfamilies, the domain composition was 

described (Supplementary Tables 24 (Sbi) and 25 (Ssp)). Interestingly, the AGC_RSK-2 subfamily 

had the highest number of PKs with multiple kinase domains in both Sbi and Ssp. Furthermore, we 

investigated the percentage of multikinase domain-containing proteins among the PKs in each 

subfamily (Supplementary Tables 22 and 23). The highest percentage (100%) was observed in the 

AGC_NDR and CMGC_SRPK subfamilies in Sbi and in the CMGC_SRPK, CMGC_CDK-CCRK 

subfamilies in Ssp. Although the AGC_NDR subfamily did not contain all of the proteins with 

multiple kinase domains in Ssp, 10 of the 15 (∼66%) had this characteristic.  The RLK-Pelle 
subfamilies, which putatively participate in a wide variety of induced biological processes, showed 

the largest differences in the domain composition in both Sbi and Ssp, as expected due to its large 

size. In addition to RLK members, the CMGC_CDK-CRK7-CDK9 (in Ssp) and CMGC_GSK 

subfamilies were among the top 10% of subfamilies with the largest number of different domains. 

Therefore, this domain diversity might be explained by the diverse functions performed by these 

proteins. The CMGC_CDK family (Joubès et al., 2000) integrates several functions of transcription 

and cell division (Malumbres, 2014). Specifically, the CRK7 and CDK9 subfamilies are related to 

cell cycle control (Goldberg et al., 2006). Additionally, the GSK subfamily affects numerous 

signaling pathways (Wrzaczek et al., 2007). 

Our study is the first to categorize a kinase superfamily considering allele copies. Although the 

presence of kinase domains in Ssp PKs was highly conserved, differences in intron exon organization 

and domain composition were found. The most common compositional differences were related to 

domain distribution along the allele copies (e.g., inversion of LRR and kinase domains along the 

sequences), insertion or loss of domains in allele copies (e.g., LRR, antifungal, and uroporphyrinogen 

decarboxylase domains, as well as domains of unknown function); and duplication of domains (e.g., 

LRR, legume lectin, EF-hand, and kinase domains). We investigated the number of kinase copies 

among the alleles of kinases, revealing diversity among the subfamilies (Fig. 6). Although there is no 
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evidence that the number of allele copies of a gene is related to its expression levels in sugarcane, 

minor differences across allele copies were observed in Dof genes (Cai et al, 2020). Therefore, our 

findings suggest specific rearrangements of kinase sequences, indicating possible functional 

associations. In addition, we verified that not all the PK subfamilies had copies in the four alleles. 

Other studied protein families in Ssp also had different pattern distributions across allele copies 

(Huang et al., 2020; Li et al., 2020). In some studies, the gene structure has been reported to be 

similar across these copies; however, this pattern is not universal (Ma et al., 2019; Shi et al., 2019). 

The genomic structure and organization of sugarcane is considerably complex (Sforça et al., 2019), 

and the pattern of gene distribution across alleles is unclear. Comparing the results of different gene 

families, there is a variability regarding the number of alleles of each gene (Li et al., 2020; Wang et 

al., 2019a). Indeed, we observed that the distribution among alleles is also variable for PK 

subfamilies’ genes.Ssp contained more multikinase domains than Sbi, and more repetitions were 

found in some of its PKs. Similar to soybean and grapevine (Liu et al., 2015; Zhu et al., 2018b), the 

Sbi kinome contained PKs with only two or three kinase domains, whereas the Ssp kinome contained 

PKs with two to five kinase domains. Interestingly, the AGC_RSK-2 subfamily was found to have 

the largest number of multikinase domains in both Sbi and Ssp, accounting for a very high 

percentage of members of this subfamily, which is explained by the fusion of two PKs in the 

evolutionary history of the RSK family (Carriere et al., 2008). The AGC_NDR subfamily also 

exhibited this notable characteristic; however, in this subfamily, the large number of multikinase 

domains is associated with the insertion of a nuclear localization signal within the kinase domain 

(Tamaskovic et al., 2003). Moreover, in Sbi and Ssp, the PKs with most kinase domains were in the 

RLK-Pelle_WAK subfamily, which is functionally linked to cell growth (Gish and Clark, 2011) and 

whose loss might result in lethality (Wagner and Kohorn, 2001). As the percentage of multikinase 

domains found in this family was small, we consider that such domains might interact with specific 

substrates (Liu et al., 2015). 
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