
Supplementary Material

In this Supplementary Material, we investigate more sophisticated networks with multiple RISs and IOs as
well as practical issues.

1 DOPPLER AND MULTIPATH FADING EFFECTS: CASE STUDIES WITH MULTIPLE
REFLECTORS

In this supplementary section, we extend our system models and analyses in sections 2 and 3 into
propagation scenarios with multiple IOs with and without intelligent reflection capabilities. We follow a
bottom-up approach starting with two IOs and illustrate the fading/Doppler effect mitigation capabilities of
RISs. We also propose a number of effective and novel methods with different functionalities.

1.1 Direct Signal and Two Reflected Signals without any RISs
In this subsection, by extending our model given in section 2, we consider the propagation scenario of

Figure S1 with two IOs. Here, in order to spice up our analyses, we assume that while the BS-MS and
BS-IO 1-MS links are parallel to the ground, the reflected signal from IO 2 arrives to the MS with an angle
of α with respect to the MS route. In this scenario, the initial (horizontal) distances between the BS and
the MS, the MS and IO 1, and the MS and IO 2 are shown by dLOS, d1, and d2, respectively. Using a
similar analysis as in section 2, under the assumption of unit gain reflection coefficients for both IOs, that
is R1 = R2 = −1, the time-varying received complex envelope can be expressed as

r(t) =
λ

4π

(
e−j2πfDt

dLOS
− ej2πfDt

dLOS + 2d1
− ej2πfD(cosα)t−jφ2

d̃2

)
(S1)

where d̃2 =
√
d2

2 tan2 α + (dLOS + d2)2 + d2/(cosα) is the initial radio path distance for the reflected

signal of IO 2, which is obtained after simple trigonometric operations, and φ2 = 2πd̃2/λ is a fixed phase
term. Here, we assume that the variations in terms of the large-scale path loss due to the movement of
MS are almost negligible (as in Figure 1) and the rays from IO 2 remain parallel for all points of the
mobile route, which corresponds to radio path distance decrements of V t cosα, with respect to time, for
these rays. It is worth noting that parallel ray assumption is approximately true for short route lengths
(Goldsmith, 2005). As seen from (S1), the received signal has three Doppler components: −fD Hz, fD Hz,
and fD cosα Hz due to the rays coming from the BS, IO 1, and IO 2, respectively.

In Figure S2, we show the magnitude of the complex envelope as well as the Doppler spectrum for the
case of α = 60◦, dLOS = d1 = 1000 m, and d2 = 500 m. As seen from Figure S2, due to constructive
and destructive interference of the direct and two reflected signals with different Doppler frequency shifts
(−100 Hz, 100 Hz, and 50 Hz), the magnitude of the complex envelope exhibits a more hostile and faster
fading pattern compared to the simpler scenario of Figure 1 (see Figure 2, top-left subplot).

1.2 Direct Signal and Two Reflected Signals with One or Two RISs
In this subsection, we again focus on the scenario of Figure S1, however, under the assumption of one

or two RISs that are attached to the existing IOs. Although being more challenging in terms of system
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optimization and analysis, we focus on the case of a single RIS first, then extend our analysis into the case
of two RISs.
1.2.1 One RIS

Let us assume that we have a single RIS that is mounted on the facade of IO 1 for the scenario of Figure
S1. For this case, the received complex envelope can be expressed as

r(t) =
λ

4π

(
e−j2πfDt

dLOS
+
ej2πfDt+jθ1(t)

dLOS + 2d1
− ej2πfD(cosα)t−jφ2

d̃2

)
. (S2)

Here, we assumed that the intelligent reflection from IO 1 is characterized by θ1(t). We investigate the
following three methods for the adjustment of θ1(t), where the corresponding complex envelope magnitudes
and Doppler spectrums are shown in Figure S3 for α = 60◦, dLOS = d1 = 1000 m, and d2 = 500 m:

• Method 1: θ1(t) = −4πfDt (mod 2π)

• Method 2: θ1(t) = 2πfDt(cosα− 1)− φ2 + π (mod 2π)

• Method 3: θ1(t) = 2πfDt(cosα− 1)− φ2 (mod 2π)

In the first method, we intuitively align the reflected signal from the RIS to the LOS signal. As seen from
Figure S3, although this adjustment eliminates the 100 Hz component in the spectrum and reduces the
Doppler spread compared to the case without RIS (Figure S2), we still observe two components in the
spectrum and a noticeable fade pattern for the received signal due to uncontrollable reflection through IO
2. It is worth noting that this might be the preferred option to obtain a high time average for the complex
envelope magnitude with the price of a high Doppler spread (faster time variation).

In the second method, we align the reflected signal from the RIS to the one from IO 2, however, this
worsens the situation by increasing the relative power of the 50 Hz component in the Doppler spectrum. As
seen from Figure S3, a more severe fade pattern is observed for Method 2 due to destructive interference
of the reflected signals to the LOS signal. This would be a preferred option in case of an eavesdropper to
degrade its signal quality.

In the third method, we follow a clever approach and instead of aligning our RIS-assisted reflected signal
to the existing two signals, we target to eliminate the uncontrollable reflection from IO 2 by out-phasing the
reflected two signals. This results a remarkable improvement in both Doppler spectrum and the received
complex envelope by almost mitigating the fade pattern. In other words, the RIS scarifies itself in Method 3
to eliminate the uncontrollable reflection from IO 2, which significantly reduces the multipath effect, while
a minor variation is still observed due to different radio path lengths of these two signals. More specifically,
for the selection of θ1(t) in Method 3, we obtain

r(t) =
λ

4π

(
e−j2πfDt

dLOS
+ ej2πfD(cosα)t−jφ2

(
1

dLOS + 2d1
− 1

d̃2

))
(S3)

which contains two components. However, the Doppler spread can be remarkably reduced when the
radio path distances of the signals reflected from IO 1 and 2, i.e., dLOS + 2d1 and d̃2, are close to each
other. For instance, for the considered system parameters of dLOS, d1, d2, and α in Figure S3, we have

1
dLOS
�
(

1
dLOS+2d1

− 1
d̃2

)
, which results almost a single-tone received signal r(t) ≈ λ

4π

(
e−j2πfDt

dLOS

)
. This

is also evident from the Doppler spectrum of the received signal for Method 3. However, Method 3 cannot
guarantee the highest complex envelope magnitude, which is also observed from Figure S3.
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To gain further insights, in Figure S4, we plot the 3D magnitude of the complex envelope with respect
to time and varying θ1(t) values between 0 and 2π. As seen from Figure S4, due to constructive and
destructive interference of multipath components (particularly due to the interference of the signal reflected
from IO 2), the complex envelope exhibits several deep fades. We also observe that it is not feasible to fix
the complex envelope magnitude to its maximum value (−48.69 dB for this specific setup) as in the case of
single reflection since the incoming three signals cannot be fully aligned at all times. Finally, we note that
performing an exhaustive search for the determination of the optimum reflection phase that maximizes
|r(t)| for each time sample might be possible with different system parameters, however, this does not fit
within the scope of this study, which explores effective solutions for the RIS configuration. We also verify
from Figure S4 that Method 1 achieves approximately the maximum magnitude for the complex envelope
in the considered experiment. In light of our discussion above, we give the following remark:

Remark 5: For the case of two reflections with a single RIS in Figure S1, the heuristic choice to maximize
the magnitude of the complex envelope is to align the reflected signal to the stronger component, that is,
the LOS signal (Method 1) under normal circumstances. While this ensures a very high magnitude for
the complex envelope, we still observe a fade pattern in time domain. On the other hand, the RIS can be
reversely aligned to the reflected signal from the plain IO (Method 3) to reduce the Doppler spread at the
price of a slight degradation in the magnitude of the complex envelope.

Remark 6: For the setup of Figure S1, the optimal reflection phase that maximizes the magnitude of the
complex envelope is given by

θ1(t) =
π

2
(1− sgn(A))− tan−1(−B/A) (S4)

where sgn(·) is the sign function and

A =
1

dLOS
cos(4πfDt)−

1

d̃2

cos(2πfD(1− cosα)t+ φ2)

B =
−1

dLOS
sin(4πfDt) +

1

d̃2

sin(2πfD(1− cosα)t+ φ2). (S5)

The proof of (S4) is given in Appendix. In Figure S5, we compare the reflection phases as well as
magnitudes of the complex envelope for Method 1 and the optimum method for the same system parameters.
As seen from Figure S5, Method 1 provides a very close phase behavior compared to the optimal one due
to the stronger LOS path and a very minor degradation can be observed in the magnitude of the complex
envelope. Nevertheless, the optimal reflection phase in (S4) is valid for all possible system parameters in
Figure S1 and guarantees the maximum complex envelope magnitude at all times. For reference, magnitude
values are also shown in the same figure for Method 3. As seen from Figure S5, Method 3 reduces the
severity of the fade pattern (Doppler spread) while ensuring the same minimum magnitude at the price of a
lower time average for the complex envelope.
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1.2.2 Two RISs
Under the assumption of two RISs attached to the existing two IOs in the system of Figure S1, the

received complex envelope is obtained as

r(t) =
λ

4π

(
e−j2πfDt

dLOS
+
ej2πfDt+jθ1(t)

dLOS + 2d1
+
ej2πfD(cosα)t−jφ2+jθ2(t)

d̃2

)
(S6)

where the time-varying and intelligent reflection characteristics of RIS 1 and 2 are captured by θ1(t) and
θ2(t), respectively. Here, compared to the previous case, we have more freedom with two controllable
reflections and the magnitude of the received signal can be maximized (and the Doppler spread can
be minimized) by readily aligning the reflected signals to the LOS signal. This can be done by setting
θ1(t) = −4πfDt (mod 2π) and θ2(t) = −2πfDt(1 + cosα) + φ2 (mod 2π), which results

r(t) =
λe−j2πfDt

4π

(
1

dLOS
+

1

dLOS + 2d1
+

1

d̃2

)
. (S7)

Similar to the case with single intelligent reflection (subsection 2.2), we obtain a constant-amplitude
complex envelope and a minimized Doppler spread (with a single component at −fD Hz) due to the
clever co-phasing of the multipath components. Interested readers may easily obtain the magnitude and the
Doppler spectrum of the complex envelope to verify our findings.

1.3 Two RISs without a LOS path
Finally, we extend our analysis for the case of non-LOS transmission through two RISs, which yields

r(t) =
λ

4π

(
ej2πfDt+jθ1(t)

dLOS + 2d1
+
ej2πfD(cosα)t−jφ2+jθ2(t)

d̃2

)
. (S8)

Similar to the case in section 3, by carefully adjusting the phases of two RISs, the Doppler effect can be
totally eliminated due to the nonexistence of the LOS signal, which is out of control of the RISs. It is evident
that this can be done by θ1(t) = −2πfDt (mod 2π) and θ2(t) = −2πfD(cosα)t+ φ2 (mod 2π).

1.4 The General Case with Multiple IOs and the Direct Signal
Against this background, in this subsection, we extend our analyses for the general case of Figure S6,

which consists of a total of R IOs. Here, we assume that N of them are coated with RISs, while the
remaining M = R−N ones are plain IOs, which create uncontrollable specular reflections towards the
MS. In this scenario (N RISs and M plain IOs), the received complex envelope is given by

r(t) =
λ

4π

(
e−j2πfDt

dLOS
+

N∑
i=1

ej2πfR,it−jψi+jθi(t)

d̃R,i
−

M∑
k=1

ej2πfI,kt−jφk

d̃I,k

)
. (S9)

Here, we assume that all rays stemming from IOs remain parallel during the movement of the MS for a
short period of time, which is a valid assumption, and without loss of generality, we consider a reflection
coefficient of −1 for the plain IOs. Additionally, the corresponding terms in (S9) are defined as follows:

• fR,i: Doppler shift for the ith RIS
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• fI,k: Doppler shift for the kth plain IO
• ψi: Constant phase shift for the ith RIS
• φk: Constant phase shift for the kth plain IO
• d̃R,i: Initial radio path distance for the ith RIS
• d̃I,k: Initial radio path distance for the kth plain IO
• θi(t): Adjustable phase shift of the ith RIS

Here, the Doppler shifts of the RISs and plain IOs are not only dependent on the speed of the MS, but
also on their relative positions with respect to the MS, i.e., angles of arrival for the incoming signals:
fR,i = fD cosαi and fI,k = fD cos βk, where αi and βk are the angles of arrival for the reflected signals of
ith RIS and kth plain IO, respectively. In this generalized scenario, we focus on the following two setups:

1.4.1 Setup I (N ≤ M)

In this setup, we have more number of uncontrollable reflectors (plain IOs) than RISs. Consequently,
we extend our methods in Supplementary subsection 1.2 and target either directly aligning N RISs to the
LOS path (to improve the received signal strength) or eliminating the reflections stemming from N out
of M plain IOs (to reduce the Doppler spread). While the alignment of the reflected signals to the LOS
signal is straightforward (Method 1), the assignment of N RISs to corresponding IOs in real-time appears
as an interesting design problem. For this purpose, we consider a brute-force search algorithm to determine
the most effective set of IOs to be targeted by RISs (Methods 2 & 3). More specifically, N out of M IOs
can be selected in C(M,N) different ways, where C(·, ·) is the binomial coefficient. Since these N RISs
can be assigned to N plain IOs in N ! ways, we obtain a total of P (M,N) = C(M,N)N ! possibilities
(permutations) for the assignment of N RISs to M IOs. Our methodology has been summarized below:

• Method 1: We align the existing N RISs to the LOS path by adjusting their reflection phases as
θi(t) = −2πfR,it+ ψi − 2πfDt (mod 2π) for i = 1, 2, . . . , N .

• Method 2: For the ith RIS minimizing the effect of the reflection stemming from the kth IO, i.e., ith
RIS out-phased with the kth plain IO, we have the following reflection phase: θi(t) = −2πfR,it+ψi +
2πfI,kt− φk (mod 2π) for i = 1, 2, . . . , N and k = 1, 2, . . . ,M . Considering these given reflection
phases, for each time instant, we search for all possible N -permutations of M plain IOs to maximize
the absolute value of the complex envelope. Then, the permutation of IOs that maximizes the complex
envelope magnitude is selected. This method requires a search over P (M,N) permutations in each
time instant, in return, has a higher complexity than the first one. Specifically, let us denote the nth
permutation (the set of IOs) by Pn =

{
P1
n,P2

n . . . ,PNn
}

for n = 1, 2, . . . , P (M,N). For a given
time instant t = t0, considering all permutations, we construct the possible the set of RIS phases as
θi(t0) = −2πfR,it0 + ψi + 2πfI,Pint0 − φPin (mod 2π) for i = 1, 2, . . . , N and the corresponding
estimate of the received signal sample rn(t0) is obtained from (S9) for the nth permutation. Finally,
the optimum permutation is obtained as n̂ = arg maxn |rn(t0)|. Then, the optimal set of plain IOs
to be targeted by RISs are determined as Pn̂ and the RIS reflection phases are adjusted accordingly:
θ̂i(t0) = −2πfR,it0 + ψi + 2πfI,Pin̂

t0 − φPin̂ (mod 2π) for i = 1, 2, . . . , N . These procedures are
repeated for all time instants. Obviously, this strategy requires the knowledge of all Doppler phases at
a central processing unit, estimation of the received complex envelope samples, and a dynamic control
of all RISs.

• Method 3: This method uses the same exhaustive search approach of Method 2, however, instead of
maximizing the the absolute value of the complex envelope, we try to minimize the variation of it with
respect to time by assigning the RISs to IOs with this purpose. Specifically, for a given time instant
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t = t0, the optimal permutation Pn̂ is obtained as n̂ = arg minn
∣∣ |rn(t0)| − |r(t−1)|

∣∣, where r(t−1)
is the sample of the received signal at the previous time instant, while at t = 0, we determine the
optimal permutation as in Method 2. This method directly targets to eliminate fade patterns of the
complex envelope instead of focusing on the maximization of the received signal strength by aligning
(co-phasing) RISs with certain IOs. In other words, Method 3 eliminates the variations in the received
signal stemming from different Doppler shifts of the incoming signals.

1.4.2 Setup II (N > M)

In this setup, we have more number of RISs than the plain IOs, and consequently, have much more
freedom in the system design. Here, we consider the same three methods discussed above (Setup I) for the
adjustment of RIS reflection phases, however, slight modifications are performed for Methods 2 and 3 due
to fewer number of plain IOs in this setup. In Method 1, we align the existing RISs to the LOS path as in
Setup I. To reduce the Doppler spread by Method 2, we search for all possible M -permutations of RISs
to target plain IOs, i.e., a total of P (N,M) permutations are considered. More specifically, at each time
instant, we consider all possible RIS permutations to eliminate the reflections from M plain IOs, while the
remaining N −M RISs are aligned to the LOS path. The permutation of RISs that maximizes the absolute
value of the sample of the received signal is selected. On the other hand, Method 3 aims to minimize the
variations in r(t) by assigning M RISs to M plain IOs, while also aligning the remaining N −M RISs to
the LOS path. Our methodology has been summarized as follows:

• Method 1: The same as Method 1 for Setup I.
• Method 2: Let us denote the nth permutation (the set of RISs) by Rn =

{
R1
n,R2

n . . . ,RMn
}

and
the set of RISs that are not included in the nth permutation by Sn =

{
S1
n,S2

n . . . ,SN−Mn

}
, i.e.,

Pn ∪ Sn = {1, 2, . . . , N} for n = 1, 2, . . . , P (N,M). For a given time instant t = t0, considering
all permutations, we construct the possible the set of RIS phases to eliminate IO reflections as
θRin(t0) = −2πfR,Rint0 + ψRin + 2πfI,it0 − φi (mod 2π) for i = 1, 2, . . . ,M , while aligning the
remainingN−M RISs to the LOS path as follows: θSin(t0) = −2πfR,Sint0+ψSin−2πfDt0 (mod 2π)
for i = 1, 2, . . . , N − M . Then, the corresponding estimate of the received signal sample rn(t0)
is obtained from (S9) for the nth permutation. Finally, the optimum permutation is obtained as
n̂ = arg maxn |rn(t0)|. Then, the optimal set of RISs to be paired with IOs and aligned to the LOS
path are determined asRn̂ and Sn̂, respectively, and the RIS reflection phases are adjusted accordingly:
θ̂Rin̂

(t0) = −2πfR,Rin̂
t0 + ψRin + 2πfI,it0 − φi (mod 2π) for i = 1, 2, . . . ,M and θ̂Sin̂(t0) =

− 2πfR,Sin̂
t0 + ψSin̂

− 2πfDt0 (mod 2π) for i = M + 1,M + 2, . . . , N . The above procedures are
repeated for all time samples.

• Method 3: This method follows the same procedures as that of Method 2, except the determination of
the optimum permutation. This is performed by n̂ = arg minn

∣∣ |rn(t0)| − |r(t−1)|
∣∣ considering the

current (estimated corresponding to the nth permutation) and previously received signal samples of
rn(t0) and r(t−1).

To illustrate the potential of our methods, we consider the 2D geometry of Figure S7 in our computer
simulations, where the MS and the BS are located at (0, 0) and (−1000, 0) in terms of their (x, y)-
coordinates, respectively. We assume that R = 10 IOs are uniformly distributed in a predefined rectangular
area at the right hand side of the origin. We again consider a mobile speed of V = 10 m/s with fc = 3
GHz and a sampling time of λ/32, but use the following new simulation parameters: a travel distance of
30λ = 3 m and an FFT size of 1024.
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Table S1. Comparison of Methods 1-3 in terms of peak-to-peak variation (∆r in dB) and time-average (r̄ in dB) of |r(t)|.

Method 1 Method 2 Method 3

N = 3, M = 7
∆r = 11.78
r̄ = −47.22

∆r = 5.43
r̄ = −47.76

∆r = 3.95
r̄ = −50.17

N = M = 5
∆r = 7.08
r̄ = −45.99

∆r = 3.09
r̄ = −49.93

∆r = 2.47
r̄ = −50.88

N = 7, M = 3
∆r = 2.91
r̄ = −44.90

∆r = 1.05
r̄ = −46.20

∆r = 0.66
r̄ = −46.62

In Figure S8, we investigate two extreme cases: N = 0,M = 10 and N = 10,M = 0. For the case
of N = 0,M = 10, i.e., the case without any RISs, we observe a Doppler spectrum consisting of many
components and in return, a severe deep fading pattern in the time domain. On the contrary, for the case
of N = 10,M = 0, in which all IOs in the system are equipped with RISs, we have a full control of the
propagation environment by applying Method 1 (aligning the reflected signals from all RISs to the LOS
path) and observe a constant magnitude for the complex envelope as in subsection 2.2. Here, we may
readily state that the case of N = 10,M = 0 with Method 1 provides the maximum magnitude for the
complex envelope and can be considered as a benchmark for all setups/methods with M > 0.

In Figures S9-S11, we consider three different scenarios based on the number of RISs in the system:
N = 3,M = 7 (Setup I), N = M = 5 (Setup I), and N = 7,M = 3 (Setup II) and assess the potential of
the introduced Methods 1-3. As seen from Figures S9-S11, although Method 1 ensures a high complex
envelope magnitude in average with the price of a larger Doppler spread (faster variation in time), Methods
2 and 3 are more effective in reducing the fade patterns observed in the time domain by modifying the
Doppler spectrum through the elimination of plain IO signals. Particularly, the improvements provided
by Method 3 are more noticeable both in time and frequency domains. For instance, for the case of
N = 7,M = 3, Method 3 almost eliminates all Doppler spectrum components stemming from three plain
IOs and ensures an approximately constant magnitude for the complex envelope, as seen from Figure S11.

To gain further insights, in Table S1, we provide a quantitative analysis by comparing the peak-to-peak
value ∆r of |r(t)| and its time average r̄ (both measured in dB) for all methods, i.e., ∆r = |r(t)|max −
|r(t)|min and r̄ = 1

ns

∑ns−1
n=0 |r(its)|, where ns and ts respectively stand for the total number of time

samples and sampling time, which are selected as ns = 960 and ts = 0.3125 ms for this specific simulation.
As observed from Table S1, increasing N noticeably reduces ∆r for all methods, while this reduction is
more remarkable for Methods 2 and 3. We also evince that Methods 2 and 3 cause in a slight degradation
in r̄ since they utilize RISs to cancel out reflections from plain IOs. Generalizing our discussion from
Subection 4.2.1, we claim that Method 1 can be the preferred choice to maximize the (time-averaged)
magnitude of the complex envelope due to the stronger LOS path, however, the complete mathematical
proof of this claim is highly intractable. We also observe that Method 2 provides a nice compromise
between Methods 1 and 3 by providing a much lower ∆r with a close r̄ compared to Method 1, while
Method 3 ensures the minimum ∆r.

1.5 The General Case with Multiple IOs and without the Direct Signal
In this section, we revisit the general case of the previous section (Figure S6), however, without the

presence of a LOS path. For this case, the received signal with N RISs and M plain IOs can be expressed
as follows:
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r(t) =
λ

4π

(
N∑
i=1

ej2πfR,it−jψi+jθi(t)

d̃R,i
−

M∑
k=1

ej2πfI,kt−jφk

d̃I,k

)
. (S10)

Here, the three methods introduced in Supplementary subsection 1.4 can be applied with slight modifica-
tions. For Method 1, since there is no LOS path, the available RISs in the system can be aligned to the
strongest path, which might be from either an RIS or a plain IO and has the shortest radio path distance.
For Methods 2 and 3, when M ≥ N , we use the same procedures as in the LOS case and assign all N RISs
to the plain IOs with different purposes. However, when N > M , after applying the same permutation
selection procedures, we determine the RIS with the strongest path among the remaining N −M RISs
in lieu of the LOS path and align the rest of the RISs (N −M − 1 ones) to this strongest RIS for each
specific permutation. Our methodology has been summarized below:

1.5.1 Setup I (M ≥ N)

• Method 1: We align the existing N RISs to the strongest path. If the strongest path belongs to
a RIS, whose index is a, we have θi(t) = −2πfR,it + ψi + 2πfR,at − ψa (mod 2π) for i =
1, . . . , a− 1, a+ 1, . . . , N , while θa(t) = 0. Otherwise, if the strongest path belongs to a plain IO with
index a, we have θi(t) = −2πfR,it+ ψi + 2πfI,at− φa + π (mod 2π) for i = 1, 2, . . . , N . Please
note that a = arg mini d̃R,i if mini d̃R,i < mink d̃I,k or a = arg mink d̃I,k, otherwise.

• Method 2: The same as Method 2 in Supplementary subsection 1.4 for M ≥ N except that rn(t0) is
obtained from (S10) for the nth permutation.

• Method 3: The same as Method 3 in Supplementary subsection 1.4 for M ≥ N except that rn(t0) is
obtained from (S10) for the nth permutation.

1.5.2 Setup II (N > M)

• Method 1: The same as Method 1 given above.
• Method 2: We follow the same steps for Method 2 in subsection 1.4 for N > M , however, for nth

permutation, the strongest RIS is selected among the set Sn (the set of N −M RISs that are not
included in the elimination of IO reflections). Denoting the index of this strongest RIS by an, where
an = arg mini∈Sn d̃R,i, we have θSin(t0) = −2πfR,Sint0 + ψSin + 2πfR,ant0 − ψan (mod 2π) for
i = 1, 2, . . . , N −M with Sin 6= an and θan(t0) = 0 for this case. The above procedures are repeated
for all permutations and the estimates of the received signal samples are obtained as rn(t0) from (S10)
for n = 1, 2, . . . , P (N,M). After the determination of the optimal permutation n̂, we obtain the set
of RISs targeting the IOs asRn̂ while the set of remaining RISs are given by Sn̂. Finally, RIS angles
are determined as in Method 2 in subsection 1.4 for N > M with the exception that the phases of the
remaining N −M RISs are aligned as θ̂Sin̂(t0) = −2πfR,Sin̂

t0 + ψSin̂
+ 2πfR,an̂t0 − ψan̂ (mod 2π)

for i = 1, 2, . . . , N −M with Sin̂ 6= an̂ and θ̂an̂(t0) = 0. The above procedures are repeated for all
time instants.

• Method 3: This method follows the same procedures as that of Method 2 given above, except the
determination of the optimum permutation, which is discussed in Supplementary subsection 1.4.

In Figures S12,S13, we investigate the application of Methods 1-3 in two scenarios: N = 3,M = 7
(Setup I) and N = 7, K = 3 (Setup II) for the same simulation scenario of Figure S7 by ignoring the LOS
path. Compared to Figures S9,S11, we observe that due to the nonexistence of the LOS path, all methods
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provide a similar level of time-average (r̄) for the complex envelope while Methods 2 and 3 eliminate deep
fades in the received signal. In other words, since we do not have a stronger LOS path, Method 1 loses its
main advantage in terms of r̄ compared to the other two methods for both scenarios.

It is worth noting that for the case of N = 0, none of the methods are applicable as in the case of the
previous section. However, for M = 0, Doppler effect can be totally eliminated due to the nonexistence of
the LOS path as follows: θi(t) = −2πfR,it+ φi (mod 2π) for i = 1, 2, . . . , N .

As a final note, our aim here is to find heuristic solutions to mitigate deep fading and Doppler effects
under arbitrary number of RISs and plain IOs, and the determination of the ultimately optimum RIS angles
are beyond the scope of this work. Although our methods provide satisfactory results, there might be a
certain permutation of RISs/IOs with specific reflection phases that may guarantee a maximized received
complex envelope magnitude and/or the lowest Doppler spread. However, the theoretical derivation of this
ultimate optimal solution seems intractable at this moment.

2 PRACTICAL ISSUES
In this supplementary section, we consider a number of practical issues and investigate the performance of
our solutions under certain imperfections in the system.

2.1 Realistic RISs
Throughout this paper, we assumed that the utilized RISs have a unit-amplitude reflection coefficient with

a very high resolution reflection phase θ(t) ∈ [0, 2π) that can be tuned in real time. However, as reported in
recent studies, there can be not only a dependency between the amplitude and the phase but also a limited
range can be supported for the reflection phase. For this purpose, we consider the realistic RIS design
of Tretyakov et al. (Liu et al., 2019), which has a reflection amplitude of −1 dB with a reflection phase
between −150◦ and 140◦. In Figure S14, we compare the complex envelope magnitudes of two scenarios
in the presence of a perfect RIS (P-RIS) and an imperfect RIS (I-RIS) with practical constraints: i) the
scenario of Figure 1 with N = 1,M = 0 and ii) the scenario of Figure S1 with N = M = 1. As seen
from Figure S14, the practical RIS of (Liu et al., 2019) causes a slight degradation both in magnitude and
shape of the complex envelope, however, its overall effect is not significant. A further degradation would
be expected in the presence of discrete phase shifts (Wu and Zhang, 2019), and this analysis is left for
interested readers.

2.2 Imperfect Knowledge of Doppler Frequencies
As discussed in Supplementary section 1, in case of multiple RISs, a central processing unit needs to

acquire the knowledge of Doppler frequencies of all incoming rays to initiate Methods 1-3 in coordination
with the available RISs. Here, we assume that due to erroneous estimation of the velocity of the MS and/or
relative positions of the IOs, the RISs in the system are fed back with erroneous Doppler shifts (in Hz),
given by feR,i = fR,i + eR,i and feI,k = fI,k + eI,k, while the dominant Doppler shift (fD) stemming from
the LOS path is perfectly known. Here, eR,i and eI,k respectively stand for the errors in Doppler shifts
for ith RIS and kth plain IO. To illustrate the effect of this imperfection, these estimation error terms are
modelled by independent and identically distributed uniform random variables in the range [−U,U ] (in Hz).
In Figure S15, we consider the scenario of N = 7,M = 3 with U = 0, 1 and 3 for the same geometry of
Figure S7. As seen from Figure S15, while the degradation in the complex envelope is not a major concern
for U = 1, a significant distortion has been observed for the case of U = 4 with respect to time. Here,
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Methods 2 and 3 appear more reliable in the presence of Doppler frequency estimation errors, however, we
observe that the overall system is highly sensitive to this type of error.

We note that the estimation of Doppler frequencies and/or real-time adaptation of RISs in realistic channel
conditions are interesting research problems to be investigated with the framework of RIS-empowered
systems.

2.3 High Mobility & Discrete-Time RIS Phases
In this subsection, we will focus on the case of high mobility under the assumption of discrete-time RIS

reflection phases. In this scenario, the RIS reflection phases remain constant for a certain time duration.
It is worth noting that all methods described earlier are also valid for the case of high mobility if the
RIS reflection phases can be tuned in real-time with a sufficiently high rate. However, in practice, due to
limitations in terms of the RIS design and signaling overhead in the network, the RIS reflection phases can
be tuned at only (certain) discrete-time instants. Let us denote the RIS reconfiguration interval by tr (in
seconds), i.e., the RIS phases can be adjusted in every tr seconds only. In our first computer simulation, we
consider that the complex envelope is represented by its samples taken at every ts seconds. Here, we assume
that once the RIS reflection phases are adjusted according to the LOS path, they remain fixed for Qts
seconds. In other words, for Q = 1, we update the RIS reflection phases at each sampling time and obtain
the results given throughout the paper. In Figure S16A, we perform this simulation for the high mobility
case of V = 100 m/s, fc = 3 GHz and ts = 3.125 µs with N = 1 and M = 0 (for the basic scenario of
Figure 1). Here, ts has been intentionally reduced to capture the variations in the complex envelope with
respect to time due to the higher Doppler spread of the unmodulated carrier and a travel distance of 3λ is
considered. In this case, we assume that RIS reflection phases are modified as θ(t) = −4πfDt (mod 2π)
in every Qts seconds, i.e., the RIS cannot be reconfigured fast enough compared to the sampling frequency
(variation) of the complex envelope. As seen from Figure S16A, a distortion is observed in the complex
envelope due to the delayed reconfiguration of RIS reflection phases. However, we conclude that even
if with Q = 50, the variation in the complex envelope is not as significant as in the case without an RIS
(shown in the figure as a benchmark), while the variation is not significant for Q = 20. In what follows, we
present a theoretical framework to describe this phenomenon.

In mathematical terms, for the considered scenario that is formulated by (4) in terms of its received
complex envelope, assuming that the RIS reflection phase is adjusted and fixed at time instant t1 while
focusing on the complex envelope at time t2 > t1, we obtain

r(t2) =
λ

4π

(
e−j2πfDt2

dLOS
+
ej2πfDt2+jθ(t1)

dLOS + 2d1

)

=
λe−j2πfDt2

4π

(
1

dLOS
+

ej4πfD∆t

dLOS + 2d1

)
(S11)

where ∆t = t2 − t1 < tr. Here, we considered the fact that the RIS reflection phase is fixed at time t1
as θ(t1) = −4πfDt1. As a result, we observe a variation in the complex envelope magnitude, which is a
function of both fD and ∆t. It is worth noting that letting ∆t = 0 in (S11), one can obtain (5) for t = t2.
After simple manipulations, the magnitude of the complex envelope is calculated as

|r(t2)| =
(
λ

4π

)(
1

d2
LOS

+
1

(dLOS + 2d1)2
+

2 cos(4πfD∆t)

dLOS(dLOS + 2d1)

)1/2

. (S12)
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It is evident from (S12) that the magnitude of the complex envelope is no longer constant unless 4πfD∆t�
1. In light of the above analysis, to ensure a constant magnitude for the complex envelope, that is, to
eliminate the fade pattern due to Doppler spread, we must have tr < 1

40πfD
for the considered scenario. In

other words, the RIS should be tuned fast enough compared to fD to capture the variations of the received
signal. To illustrate this effect, in Figure S16B, for a fixed tr value of 12.5 µs, we change the velocity of
the MS and observe the magnitude of the complex envelope. As seen from Figure S16B, while the smaller
Doppler frequency of 500 Hz (V = 50 m/s) can be captured by the RIS since tr < 1

40πfD
= 15.91 µs

for this scenario, we observe an oscillation in the magnitude for the higher Doppler frequencies of 2 kHz
(V = 200 m/s) and 4 kHz (V = 400 m/s) since the condition of tr < 1

40πfD
is no longer satisfied. In light

of the above discussion, we conclude that increasing Doppler frequencies poses a much bigger challenge
for the real-time adjustment of RIS reflection phases.

Finally, it is worth noting that in case of slow fading (1/fD � Ts), where Ts is the symbol duration,
the channel may be assumed to be static over one or several transmission intervals and the variations in
the magnitude of the complex envelope from symbol to symbol (in our case, for unmodulated cosine
signals) can be compensated by adjusting RIS reflection phases at every Ts seconds (with slight variations
in magnitude if Ts > 1

40πfD
). On the other hand, in the case of fast fading (1/fD < Ts), since the channel

impulse response changes rapidly within the symbol duration, in order to compensate Doppler and fading
effects, i.e., to obtain a fixed magnitude for the complex envelope during a symbol duration, RIS reflection
phases should be tuned at a much faster rate compared to Ts. As an example, consider the transmission of
an unmodulated cosine signal for a period of 3 ms as in Figure S16A. For this case, we have fast fading
due to the large Doppler spread, and this can be eliminated by adjusting the RIS reflection phases at a much
faster rate compared to 3 ms, i.e., tr < 7.96 µs. Failure of doing this causes variations in the complex
envelope magnitude as shown in Figure S16A.

APPENDIX
The received complex envelope in (S2) can be expressed as

r(t) = rLOSe
jξLOS(t) + r1e

jξ1(t) + r2e
jξ2(t) (S13)

where magnitude and phase values of the LOS and two reflected signals (from IO 1 (RIS) and IO 2) are
shown by rLOS, r1, r2 and ξLOS(t), ξ1(t), ξ2(t), respectively. Here, we are interested in the maximization of
|r(t)| with respect to ξ1(t) = 2πfDt+ θ1(t), which captures the reconfigurable reflection phase of the RIS.
We use the following trigonometric identity: For z1 = r1e

jξ1 , z2 = r2e
jξ2 , z3 = r3e

jξ3 , and z4 = z1 + z2 +
z3 = r4e

jξ4 , we have r4 = (r2
1 +r2

2 +r2
3 +2r1r2 cos(ξ1−ξ2)+2r1r3 cos(ξ1−ξ3)+2r2r2 cos(ξ2−ξ3))1/2.

In light of this, the maximization of |r(t)| can be formulated as

max
θ1(t)

|r(t)|2

max
θ1(t)

rLOSr1 cos(ξLOS(t)− ξ1(t)) + r1r2 cos(ξ1(t)− ξ2(t))

max
θ1(t)

rLOS cos(4πfDt+ θ1(t))

+ r2 cos(2πfDt(1− cosα) + φ2 + θ1(t)) (S14)
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where the constant magnitude terms and the term does not contain θ1(t) is dropped. Using the identity
cos(x+ y) = cos x cos y − sinx sin y and grouping the terms with θ1(t), we obtain

max
θ1(t)

A cos θ1(t) +B sin θ1(t)

max
θ1(t)

sgn(A)
√
A2 +B2 cos(θ1(t) + tan−1(−B/A)) (S15)

where A and B are as defined in (S5) and the harmonic addition theorem is used. Consequently, to
maximize the complex envelope, we have to ensure

sgn(A) cos(θ1(t) + tan−1(−B/A)) = 1. (S16)

This can be satisfied by
θ1(t) =

π

2
(1− sgn(A))− tan−1(−B/A) (S17)

which completes the proof.
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Figure S2. The scenario of Figure S1 without an RIS: (a) Complex envelope magnitude, (b) Doppler
spectrum of the received signal.
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Figure S3. Magnitude and Doppler spectrum of the received signal with an RIS for scenario of Figure S1
under three different phase selection methods.
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Figure S4. 3D illustration of the variation of the complex envelope magnitude with respect to time for all
possible RIS reflection angles (scenario of Figure S1).
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Figure S7. Considered simulation geometry with multiple IOs (the first N of them are assumed to have
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Figure S8. Complex envelope and Doppler spectrum for two extreme cases under the scenario of Figure
S6: (top) N = 0,M = 10 (10 plain IOs without any RISs) and (bottom) N = 10,M = 0 (10 RISs without
any plain IOs).
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Figure S9. Complex envelope magnitude and Doppler spectrum for the general case with 10 IOs and
N = 3,M = 7 (Setup I).
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Figure S10. Complex envelope magnitude and Doppler spectrum for the general case with 10 IOs and
N = M = 5 (Setup I).
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Figure S11. Complex envelope magnitude and Doppler spectrum for the general case with 10 IOs and
N = 7,M = 3 (Setup II).
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Figure S12. Complex envelope magnitude and Doppler spectrum for the general case with 10 IOs without
a LOS path and N = 3,M = 7 (Setup I).
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Figure S13. Complex envelope magnitude and Doppler spectrum for the general case with 10 IOs without
a LOS path and N = 7,M = 3 (Setup II).
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Figure S14. Complex envelope magnitude in the presence of a realistic RIS for the scenarios of Figures
1,S1.
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Figure S15. Complex envelope magnitude for the general case with 10 IOs with a LOS path and N =
7,M = 3 under erroneous Doppler frequency shifts at RISs (U = 1 and 4) with the perfect case (U = 0).
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Figure S16. Complex envelope magnitude for the scenario of Figure 1 (N = 1,M = 0) a) under high
mobility (V = 100 m/s) and fixed reflection phases for a period of Qts seconds with Q = 1, 20, and 50, b)
under increasing Doppler frequencies and a reflection phase update duration of tr = 12.5 µs.
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