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APPENDIX

Mathematical bounds of solutions

Here we show that solutions of the system of differential equations for juveniles ./, adults
A, dead oyster shell R and sediment S are bounded. The proof is based on two results of
differential equations. First, if u(t) satisfies v’ < u(D — Bu) + C with u(0) = ug > 0
and B,C,D > 0, then limsupu(t) < (D + v D? +4BC)/(2B), which is the unique

t—00
positive equilibrium of the equation v = w(D — Bu) + C. Similarly if v(t) satisfies
a linear inequality v' < E — Fv with v(0) = vg and E, F > 0, then limsupv(t) <
t—00
limsup[E/F + (vo — E/F)e T = E/F.

t—00

For the juvenile oyster equation, from L(A, R) < Lo and f(d;) < 1, we get J' <
PLy — J and thus limsup J(t) < PLg. Secondly, for the live adult oyster equation,

t—00
lim sup aJ (t) < aP Ly, and the logistic growth term ¢ Af(d4)(1—A/K) < A(¢p—9pA/K),
t—o0

so asymptotically A’ < aPLy+ A(¢p — ¢A/K). Thus limsup A(t) < A = (K¢ +
t—o0

VK202 + 4K ¢paPLg)/(26). Next for the dead oyster shell equation, since 0 < f(d4) <
1, R < (1n+€)A —vR, we have limsup R(t) < (u + €) Ao /. Finally for the sediment
t—o0

equation, both g and exp[—F(C'g)A/Cyg] are bounded above by 1, so S’ < C' — 3S. Thus
limsup S(t) < C/p.
t—00

In summary, for any initial conditions (.Jy, Ag, Ro, So) € ]Rﬁ, none of the variables
juvenile oysters, adult oysters, dead oyster shell, or sediment can grow indefinitely. One
can also see that once the initial condition is non-negative, the solution stays non-negative.
Hence the region I' = {(J,A,R,S) : 0 < J < PLp,0 < A < A,0 < R < (n+
€)As /7,0 < S < C/p} is positively invariant for the system of (J, A, R, S). In particular,
all equilibria of the system lie in the region I'.
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Stability of extinction equilibrium

The equilibrium points of our model satisfy

0=PL(AR)f(dy) — J, ShH
0=ar+oafian (1= ) ~uf@)d-di-f@)a 6
0=pf(da)A+e(l— f(da))A—R, (S3)
0= —BS + Cgexp <—%§)A) . (S4)

Linearizing (SI)-(S4) at the trivial equilibrium Ey = (0,0, 0, C'/3), we obtain the Jacobian
matrix to be

-1 Pf(=C/B)/(¥<) 0 0
sowen-| § GG 8 ) e
0 Cy'(0) = F(C) Cyg(0) —p

We can see easily from the Jacobian that two of the four eigenvalues are —y and — /3. To
determine the stability, we need to further analyze the top left submatrix

(-1 PACIB)WQ)
Lf‘( o« J(-C/B)(6—pte) - ) (0

The extinction equilibrium (0, 0, 0, C'/3) is locally asymptotically stable if the trace of L »
is negative (Tr(L ») < 0) and the determinant positive (Det(L ») > 0), where

Tr(Ly) =1+ f(=C/B) (¢ —p+e)—¢ (S7)
Det(L y) = —f(=C/B)[¢ — p+ e+ aP/(Y)] + e (S8)

We first argue that 7'r(L /) < 0 parameters of interest. For equation (S7), as long as
the maximum sediment deposition rate C' remains positive, f(—C'/3) < f(0) = 1/2, and
-1+ f(-C/B)(¢p—pu+e)—e< —1+4(1/2)(¢ — u+ €) — €. Then one can estimate a
bifurcation value ¢p;f > 1 + € + 2. Using the parameters in Table 2, we obtain ¢y, > 3.34
which is unreasonably high (the one in Table 2 is ¢ = 0.649). Because realistically
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f(=C/pB) is alot smaller than f(0) and very close to 0, ¢y, s for the actual trace would be
larger and more unrealistic. Thus we can assume 7'r(L /) < 0.

We next argue that Det(L ») > 0 parameters of interest.In order for the determinant to
be positive, it is equivalent to write f(—C'/5)[¢ — u+ € + aP/(¢()] — € < 0. Similarly to
above, f(=C/B)[¢ — p+ e+ aP/(PQ)] — e < (1/2)[¢p — p+ e+ aP/(Y()] — e Using
the parameters in Table 2 and PP = 2000, we obtain ¢;f ~ 1.06 which is still relatively
high comparing to 0.649. Again, we need to remember that f(—C'/3) is very close to 0,
which makes ¢y, ¢ for the actual determinant a lot larger than the value 1.06. In fact, even
when we take C' = 0.001 (20 times smaller than our estimated C' = 0.02), ¢;5 ~ 7.07
is still unreasonably high. So we can also safely assume Det(L /) > (. In both cases,
the scenario that the extinction equilibrium is unstable is not realistic, and we can always
assume that the extinction equilibrium is locally asymptotically stable.
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