Membrane-stress caused by unprocessed outer membrane lipoprotein intermediate, pro-Lpp affects DnaA and Fis-dependent growth

Supplementary Material

Supplementary Figure 1: Ectopic expression of Lpp(C21G) inhibits growth.

(A) Growth, and (B) Viability of *lpp-null* cells with an increasing concentration of IPTG with 0 μ M (black), 10 μ M (green), 50 μ M (red), 100 μ M (purple), and 1000 μ M (orange) for the expression of Lpp in M9+CAA+Glu media. (C) Growth, and (D) Viability of *lpp-null* cells in the presence of an increasing concentration of IPTG with 0 μ M (black), 10 μ M (green), 50 μ M (red), 100 μ M (purple), and 1000 μ M (orange) for the expression of Lpp(C21G) in M9+CAA+Glu media. Viability is expressed in cfu/ml and presented on a linear scale. Bar denotes a standard error. Data are means ±SEM of at least three independent experiments. ***p<0.001, ns p>0.05 in one-way ANOVA with Dunnett's multiple comparison test. Serial dilutions of *lpp-null* cells spotted on varying concentrations of IPTG to induce (E) Lpp and (F) Lpp(C21G) on M9+CAA+Glu agar plates. (G) Immunoblotting analysis to compare plasmid-derived Lpp in *lpp-null* cells with endogenous Lpp (ten-fold dilution) from BW25113. (H) Immunoblotting for the detection of Lpp(C21G). Loading controls for immunoblotting are ponceau-S staining for total protein normalization presented in greyscale.

Supplementary Figure 2: Overexpression of DnaA fails to alleviate growth inhibition due to Lpp(C21G).

(A) Viability of *lpp-null* cells expressing DnaA and Lpp(C21G). No inducer control (black), in the presence of 0.2% Arabinose (green) for DnaA, 50 μ M IPTG (red) for Lpp(C21G), and 50 μ M

IPTG + 0.2% Arabinose (purple) for both Lpp(C21G) and DnaA expression in M9+CAA+Glu media. (**B**) Serial dilutions of *lpp-null* cells capable of expressing plasmid-derived Lpp(C21G) and DnaA on agar plates. (**C**) Immunoblotting for the detection of DnaA and Lpp(C21G). Loading control for immunoblotting is ponceau-S staining for total protein normalization presented in greyscale. Viability is expressed in cfu/ml and presented on a linear scale. Data are means ±SEM of at least three independent experiments. ***p<0.001, in one-way ANOVA with Dunnett's multiple comparison test.

Supplementary Figure 3: Lack of either HU, IHF, or SeqA unable to alleviate inhibited growth due to overexpression of Lpp(C21G)

(A) Viability, and (B) Serial dilutions of *hupA-null lpp-null* cells expressing Lpp(C21G). No inducer control (black), and in the presence of 50μ M IPTG (red) for Lpp(C21G) expression in M9+CAA+Glu media. (C) Viability, and (D) Serial dilutions of *hupB-null lpp-null* cells expressing Lpp(C21G). No inducer control (black), and in the presence of 50μ M IPTG (red) for Lpp(C21G) expression in M9+CAA+Glu media. (E) Viability, and (F) Serial dilutions of *ihfA-null* cells expressing Lpp(C21G). No inducer control (black), and in the presence of 50μ M IPTG (red) for Lpp(C21G) expression in M9+CAA+Glu media. (G) Viability, and (H) Serial dilutions of *ihfB-null* cells expressing Lpp(C21G). No inducer control (black), and in the presence of 50μ M IPTG (red) for Lpp(C21G) expression in M9+CAA+Glu media. (I) Viability, and (J) Serial dilutions of *ihfB-null* cells expressing Lpp(C21G) expression in M9+CAA+Glu media. (I) Viability, and (J) Serial dilutions of *seqA-null lpp-null* cells with plasmids expressing Lpp(C21G). No inducer control (black), and in the presence of 50μ M IPTG (red) for Lpp(C21G). No inducer control (black), and in the presence of 50μ M IPTG (red) for Lpp(C21G). No inducer control (black), and in the presence of 50μ M IPTG (red) for Lpp(C21G). No inducer control (black), and in the presence of 50μ M IPTG (red) for Lpp(C21G). No inducer control (black), and in the presence of 50μ M IPTG (red) for Lpp(C21G). No inducer control (black), and in the presence of 50μ M IPTG (red) for Lpp(C21G). No inducer control (black); in the presence of 50μ M IPTG (red), 1000μ M IPTG (blue) for Lpp(C21G) expression in M9+CAA+Glu media. Viability is expressed in cfu/ml and presented on a linear scale. Data are means ±SEM of at least two independent experiments.

Supplementary Figure 1

Supplementary Figure 2

Supplementary Figure 3

Strain	Genotype	Source or Reference
BW25113	F-, Δ [araD-araB]567, Δ lacZ4787[::rrnB-3], λ^{-} , rph-1, Δ [rhaD-rhaB]568, hsdR514, lacI ⁺	Datsenko et al., 2000
JW1667-5	BW25113, <i>Alpp-752::kan</i> ,	Baba et al., 2006
DAP1001	JW1667-5, <i>Afis::cam</i>	This study
JW3964-1	BW25113, <i>AhupA771::kan</i>	Baba et al., 2006
DAP1002	JW3964-1, <i>Дlpp::cam</i>	This study
JW0430-3	BW25113, <i>ДhupB726::kan</i>	Baba et al., 2006
DAP1003	JW3964-1, <i>Дlpp::cam</i>	This study
JW1702-1	BW25113, <i>\DeltaihfA786::kan</i>	Baba et al., 2006
JW0895-3	BW25113, <i>∆ihfB735::kan</i>	Baba et al., 2006
JW0674-1	BW25113, <i>AseqA735::kan</i>	Baba et al., 2006
DAP1004	JW0674-1, <i>Alpp::cam</i>	This study
JW3229-1	BW25113, <i>Afis779::kan</i>	Baba et al., 2006
JW1683-1	BW25113 <i>AcutC728::kan</i> ,	Baba et al., 2006
DAP1005	JW1683-1, <i>Alpp::cam</i>	This study
DAP1006	JW1683-1, <i>Afis::spec Alpp::cam</i>	This study
MDL12	MG1655 pgsA30::kan, F[lacOP-pgsA+]1 lacZ', lacY::Tn9	Xia et al., 1995
DAP1007	MDL12, ⊿fis∷spec	This study
DAP1008	MDL12, <i>AcutC::tet</i>	This study
DAP1009	MDL12, <i>Δfis::spec, ΔcutC::tet</i>	This study
DH5a	F-, Δ [argF-lac]169, φ 80dlacZ58[M15], Δ phoA8, glnX44[A _s], λ -, deoR481, rfbC1, gyrA96[NalR], recA1, endA1, thiE1, hsdR17	Lab stock
Plasmids		
pC2	pBR322, lacI, Amp ^R , lpp ^P -lac ^{PO} -lppCys ²¹ -Gly	Inouye et al.,1983
pC2-Lpp	$pBR322$, $lacI$, Amp^{R} , lpp^{P} - lac^{PO} - lpp	This study
pSC	$p15A$, $araC$, Tet^{R} , P_{BAD}	This study
pSC(dnaA)	$p15A$, $araC$, Tet^{R} , P_{BAD} - $dnaA$	This study
pSC(<i>dnaAL366K</i>)	$p15A$, $araC$, Tet^{R} , P_{BAD} - $dnaA(L366K)$	This study
pSC-Fis	$p15A$, $araC$, Tet^R , P_{BAD} -fis	This study
pKD-sg-ack	$pSC101$, ori^{TS} , $araC$, $Spect^{R}$, P_{BAD} -gam bet exo P_{Tet} -sg-ack	Reisch et al., 2015
pSIJ8	$pSC101, ori^{TS}, araC, Amp^{R}, P_{BAD}-gam bet exo$	Jensen et al., 2015

Supplementary Table 1

Supplementary Table 2

Primers	Description	Primer Sequence	Source
CP1	Fwd Chloramphenicol cassette	GTCCAAGCGAGCTCGATATCAA	This study
CP2	Rev Chloramphenicol cassette_1	GTTGATCGGGCACGTAAGAGG	This study
CP3	Fwd Lpp	ATGAAAGCTACTAAACTGGTACTGGGCG	This study
CP4	Rev Lpp	TTACTTGCGGTATTTAGTAGCCATGTTGTC	This study
CP5	Fwd <i>∆lpp∷cam</i> [w/ 50bp homology arm]	aatacttgtaacgctacatggagattaactcaatctagagggtattaataGTC CAAGCGAGCTCGATATCAA	This study
CP6	Rev <i>∆lpp∷cam</i> [w/ 50bp homology arm]	acaaaaaaaatggcgcacaatgtgcgccatttttcacttcacaggtactaGT TGATCGGGCACGTAAGAGG	This study
CP7	Fwd Confirmatory PCR for <i>∆lpp∷cam</i>	ACCCAGCGTTCGATGCTTCT	This study
CP8	Rev Confirmatory PCR for <i>∆lpp∷cam</i> _1	AGCAGCCTGAACGTCGGAAC	This study
CP9	Rev Confirmatory PCR for <i>∆lpp∷cam</i> _2	GCAGAATGGTGAACCAGAGCAA	This study
CP10	Rev Chloramphenicol cassette_2	GTGAATACCACGACGATTTCCG	This study
CP11	Fwd Fis [w/ 5'-NdeI restriction site]	AGAACATATGTTCGAACAACGCGTAAAT	This study
CP12	Rev Fis [w/5'-StyI restriction site]	ATAAACCTAGGTTAGTTCATGCCGTATTTTTC A	This study
CP13	Fwd <i>∆fis∷cam</i> [w/ 60bp homology arm]	aggcgttggaggcatacttcgaaaattttgcgtaaacagaaataaagagctga cagaactGTCCAAGCGAGCTCGATATCAA	This study
CP14	Rev <i>∆fis∷cam</i> [w/ 60bp homology arm]	aaaaaggcgcttccccatgccgagtagcgcctttttaatcaagcatttagctaa cctgaaGTTGATCGGGCACGTAAGAGG	This study
CP15	Fwd Confirmatory PCR for <i>∆fis∷cam</i>	TCCAAATGACCAGTTTCGGC	This study
CP16	Rev Confirmatory PCR for <i>∆fis∷cam</i>	TTCACATCCTGTTCTCATGGTCAC	This study
CP17	Fwd <i>∆fis∷spec</i> [w/ 60bp homology arm]	aggcgttggaggcatacttcgaaaattttgcgtaaacagaaataaagagctga cagaactTTATTTGCCGACTACCTTGGTGA	This study
CP18	Rev <i>∆fis∷spec</i> [w/ 60bp homology arm]	aaaaaggcgcttccccatgccgagtagcgcctttttaatcaagcatttagctaa cctgaaATGCGCTCACGCAACTGGT	This study
CP19	Rev Spectinomycin cassette	CTTACCGTCGCGTTACTGTAAGAA	This study
CP20	Fwd <i>\(\Delta\) cutC::tet</i> (w/ 60bp homology arm)	TACGAGCAAGCATCATATTGGGCGACATGATG CAACGGTAAAAATCATTTGGCCTGATGGCGTT CTTAAGACCCACTTTCACAT	This study

CP21	Rev <i>∆cutC∷tet</i> (w/ 60bp homology arm)	TCCGTGGTCCATTGAAGAGATCGTTGCCAGCG AGCAGTCGGCGTAATTAAGGAGTAAAAATGCT AAGCACTTGTCTCCTGTTTA	This study
CP22	Fwd Confimatory PCR for <i>∆cutC∷tet</i>	TCAACAGATCACGGTTATCGTTC	This study
CP23	Rev Confimatory PCR for <i>∆cutC::tet</i>	ATGAGCGATTACCGAATCCGA	This study
CP24	Rev Confimatory PCR for TetA	TGCGATCTTTGTCGAACTATTCA	This study