Supplementary Material

Bacterial spores are microorganisms commonly used as bio-indicators in various sterilization processes. We have reviewed experimental data on spore inactivation by atmospheric pressure and reduced pressure plasmas operating in various conditions. The review is limited to the sterilization of spores deposited and dried on surfaces. The most significant experimental parameters are given, namely the type of microorganism, the strain, the initial load (N_0) and surface concentration in cfu/cm², assuming homogeneous deposition, the material of the surface treated, the pressure, the exposure time, the operating gas mixture, and the operating conditions of the plasma source.

Table S1 - Review of spore inactivation results by plasma treatments reported in Fig. 5 of the main text. The D-valu	ie is given if it was determined from the
phase decay of the spores population.	

Author	Ref	Microorg.	Strain	No	N_0/cm^2	Surface	Source	Gas/ Pressure	Time	Distance	Comment
Halfman et al.	(1)	B. Atrophaeus	ATCC 51189	10 ⁶	_	Glass	RF ICP, 1kW	Ar-H ₂ /10 Pa	60 s	direct	Sprayed
								Ar-N ₂ /10 Pa	40 s	direct	
								Ar-O ₂ /10 Pa	60 s	direct	
								Ar/10 Pa	100 s	direct	
		G. Stearothermophilus	ATCC 7953	10 ⁶	-	Glass	RF ICP, 1kW	Ar-H ₂ /10 Pa	60 s	direct	Sprayed
								Ar-N $_2/10$ Pa	30 s	direct	
								Ar-O ₂ /10 Pa	30 s	direct	
								Ar/10 Pa	30 s	direct	
Stapelman et al.	(2)	B. Pumilus	SAFR-032	5x10 ⁸	~25 spore layers	Stainless steel screw	MW, 400W	H ₂ /5 Pa	242 s	direct	$104^{\circ}C \text{ after } 300 \text{ s};$ D = 40.3 ±3 s
		B. Subtilis	DSM 402					H ₂ /5 Pa	118 s	direct	$66^{\circ}C \text{ after } 60 \text{ s};$ D = 19.7 ±2.3 s
Moisan et al.	(3)	B. Atrophaeus	ATCC 9372	10 ⁷	10 ⁵	Polystyrene, 95 cm ²	MW, 200W, 50 L chamber	N ₂ -O ₂ /470 Pa	45 min	82 cm	<35-40°C after 30 min
							MW, 120W, 5.5 L chamber	N ₂ -O ₂ /670 Pa	60 min	25 cm	
		G. Stearothermophilus	ATCC 7953	10 ⁷			MW, 120W, 5.5 L chamber	N ₂ -O ₂ /670 Pa	30 min	25 cm	

Author	Ref	Microorg.	Strain	No	N_0/cm^2	Surface	Source	Gas/ Pressure	Time	Distance	Comment
		B. Pumilus	ATCC 27142	10 ⁷			MW, 120W, 5.5 L chamber	N ₂ -O ₂ /670 Pa	60 min	25 cm	5-log
Nagatsu et al.	(4)	G. Stearothermophilus	ATCC 12980	2x10 ⁶	-	Stainless steel	MW, 300 W, 11 L chamber	Synthetic air/90 Pa	25-35 min	direct	95-100°C after 40 min
Lim et al.	(5)	B. Atrophaeus	ATCC 9372	2.10 ⁷	-	Glass	RF-APPJ, 130W,	Ar-O ₂ /1 Atm	30s	5 mm	85°C D=4.5 s
									72 s	10 mm	70°C; D = 12 s
									342 s	15 mm	50°C D = 57 s
Herrmann et al.	(6)	B. Globigii (Atrophaeus)	-	10 ⁷	5x10 ⁷	Glass, 20 mm ²	RF-APPJ, 300W, 92 slm	He-O ₂ /1 Atm	27 s	5 mm	D=4.5 s, 175°C
Venezia et al.	(7)	B. Atrophaeus	ATCC 9372	10 ⁶	1.1x10 ⁶	Stainless steel, 88 mm ²	DBD, PlasmaSol sterilizer, 30 W, 1slm, in closed container	N ₂ -O ₂ - ethylene (1%) / 1 atm	2 min	afterglow	Ambient temperature
		G. Stearothermophilus	ATCC 7953						10 min		
Akitsu et al.	(8)	B. Atrophaeus	ATCC 9372	2x10 ⁶	10 ⁶	Cellulose, 1.8 cm^2	DBD, 80W, 100 kHz	He-H ₂ O 3.2% / 1 atm	30 min	direct	~59°C
		G. Stearothermophilus	ATCC 7953	1.3x10 ⁶	6.5x10 ⁵	Cellulose, 1.8 cm ²	DBD, 80W, 100 kHz		30 min	direct	~59°C
		G. Stearothermophilus	ATCC 7953	1.5 x10 ⁶		Stainless steel	DBD, 13.56 MHz, 200W		3 min	direct	~108°C

Author	Ref	Microorg.	Strain	No	N_0/cm^2	Surface	Source	Gas/ Pressure	Time	Distance	Comment
Muranyi et al.	(9)	B. Atrophaeus	ATCC 51189	10 ⁶	6.2x10 ⁴	PET, 16 cm ² , spray	CDBD, 130 W	Synthetic air / 1 atm	1 s	direct	Sprayed
Muranyi et al.	(10)	B. Subtilis	DSM 4181	10 ⁶	6.2x10 ⁴	PET, 16 cm ² , spray	CDBD, 170 W	Air, 70% RH/ 1atm	1 s	direct	Sprayed
Patil et al.	(11)	B. Atrophaeus	ATCC 9372			Strip, 1.8 cm ² , inside polypropyle ne container	DBD, 40 W, 20 mm gap, 70 kV _{RMS}	Air, 50 % RH / 1 atm	60 s	direct	
								Air, 50% RH / 1 atm	120 s	direct	
Schnäbel et al.	(12)	B. Atrophaeus	_	10 ⁶	$\sim 2.5 \text{ x} 10^4$	Glass bottle, 250 mL (about 40 cm ²)	MW, 1.2 kW, 13 slm, plasma on for 7 s	Air, 20% RH / 1 atm	25 min	25 cm	26.9°C on glass surface;
Klämpfl et al.	(13)	B. Subtilis	ATCC 6633	10 ⁶	5x10 ⁵	Stainless steel, 2cm ²	SMD, 4W, 35 mW/cm ²	Air / 1 atm	5 min	5 mm	Sporicidal effect limited by bacterial density and additional burden
Klämpfl et al.	(14)	G. Stearothermophilus	ATCC 7953	2x10 ⁶	10 ⁶	stainless steel, 1.80 cm ²	SMD, 35 mW/cm ²	Air / 1 atm	5.7 min	8mm	Ambient temperature heat: $+0.2^{\circ}$ C/min D = 0.9 min
		B. Atrophaeus	ATCC 9372						3.4 min		D =0.6 min
		B. Subtilis	DSM 13019						1.7 min		D = 0.3 min
		B. Pumilus	ATCC 7142						3.2 min		D = 0.5 min

Author	Ref	Microorg.	Strain	No	N_0/cm^2	Surface	Source	Gas/ Pressure	Time	Distance	Comment
Shimizu et al.	(15)	B. Atrophaeus	ATCC 9372	10 ⁷	107	Aluminium, 95 mm ²	SMD, 0.4 W/cm ² , in $15x12x12$ cm ³ chamber	Ambient air (50% RH)/ 1 atm	90 min	21 cm	D = 15 min

Author	Ref	Microorganism	Strain	No	N ₀ /cm ²	Surface	Method	Model	Temperature	Time	Comment
Kempf et al.	(16)	B. Atrophaeus	ATCC 9372	10^{8}		Stainless steel	Dry heat (ambient		115°C	555 min	D values
						vessel	air)		170°C	2 min	
Alfa et al.	(17)	B. Atrophaeus	ATCC 9372	10 ⁶	5x10 ⁴	Lumen, 20cm ²	H ₂ O ₂ plasma	Sterrad	40°C	75-85 min	in Tyvek package
Rogers et al.	(18)	B. Subtilis	ATCC 19659	10 ⁸	7x10 ⁶	Glass, 14.2 cm ²	Formaldehyde 1200ppm, RH: 70-75%		22-23°C	10h	
		G. Stearothermophilus	ATCC 12980								
Shintani	(19)	B. Atrophaeus	ATCC 9372				EtO, 1000 mg/L, 50% RH		54.4 °C	9 min	
							EtO, 200 mg/L, 50% RH		54.4 °C	32 min	
Klämpfl et al.	(14)	G. Stearothermophilus	ATCC 7953				H_2O_2 , 6 mg/L, saturated stream		60 °C	25.2 min	data from Simicon Gmbh
Rogers et al.	(20)	B. Subtilis	ATCC 19659	10^{8}	7x10 ⁶	Glass, 14.2 cm^2	H ₂ O ₂ , 1000 ppm		ambient	20 min	
Rutala et al.	(21)	G. Stearothermophilus	PB49T	10 ⁶	4x10 ⁴	Stainless steel lumens, 25 cm ²	H ₂ O ₂ plasma	Sterrad 100	41°C	73 min	Failed 74% of times
								Sterrad 100S		52 min	Complete

Table S2 - Review of spore inactivation results by standard sterilization techniques reported in Fig. 5 of the main text.

Note: a humidified, and 1% ethylene admixture; b EtO tests were always followed by 13-15h of aeration

Author	Ref	Microorg.	Strain	No	N_0/cm^2	Surface	Source	Gas/ Pressure	Time	Distance	RF	Comment
Levif et al.	(22)	B. Atrophaeus	ATCC 9372	10 ⁶	_	Metallic forceps	MW, 5.5 L chamber, 120 W, 2.45 GHz	N ₂ -O ₂ / 666 Pa	60 min	afterglow	4.5	Effect of packaging considered
				10 ⁷	_	Polystyrene, 9 cm ²			30 min		5	T<50°C
Lerouge et al.	(23)	B. Subtilis	ATCC 9372	10 ⁷	2x10 ⁶	Borosilicate glass vial	MW, 2.45 GHz, 200W	O ₂ -CF ₄ / 80 mTorr	5 min	direct	4	
							RF, 13.56 MHz, 200 W				2.5	Vial on powered electrode
											0.8	Vial on rounded electrode
							MW, 2.45 GHz, 200W	O ₂			2.2	
Brandenburg et al.	(24)	B. Atrophaeus	ATCC 9372	10 ⁶	$\approx 10^7$	Polyethylene strip, 0.2 cm ²	RF-APPJ, 27.12 MHz, 20W, 20 slm	Ar / 1 atm	7 min	22 mm	4.3	80-90°C
Van Bokhorst– van de Veen et al.	(25)	B. Cereus	ATCC 14579	10 ⁶	5.9 x10 ⁴	GSWP filter (0.22 μm), cellulose, 17 cm ²	AC-APPJ, CP121 plasma demonstrator, 50 Hz, 3 kV, 15 slm	N_2 / 1 atm	20 min	_	3.5	
		B. Atrophaeus	ATCC 9372								5	
		G. Stearothermophilus	ATCC 7953								4.1	

Table S3 - Review of the spore inactivation results by plasma treatments that were not included in Fig. 5.

Author	Ref	Microorg.	Strain	No	N_0/cm^2	Surface	Source	Gas/ Pressure	Time	Distance	RF	Comment
Boudam et al.	(26)	B. Subtilis	_	10 ⁶	10 ⁶	Polystyrene, 1 cm ²	DBD (glow)	N ₂ -N ₂ O (40 ppm) /1 atm	7 min	direct	5.1	
						Petri dish in 20 L pyrex afterglow chamber	MW, 100W, 2.45 GHz	N ₂ -O ₂ (0.7 %) /5 torr	40 min	afterglow	6	
Heise et al.	(27)	B. Subtilis	ATCC 51189	10 ⁶	2.6x10 ⁴	PET, sprayed on 38.5 cm ²	DBD, 7 W/cm ²	Ar /1 atm	15 s	direct	5	
								$N_2/1$ atm	20 s		4	
								Dry air /1 atm	25 s		1	
							CDBD with 282 nm excimer lamp, 7 W/cm ²	O ₂ /1 atm	10 s		6	
		A. Niger	DSM 1957				DBD, 7 W/cm ²	Ar/1 atm	12 s		6	
								$N_2/1$ atm	23 s		2.5	
								Dry air /1 atm	23 s		4	
							CDBD with 222 nm excimer lamp, 7 W/cm ²	Ar/1 atm	8 s		6	
Lai et al.	(28)	B. Cereus	ATCC 1178	10 ⁶	5x10 ⁶	Glass slide, 0.2 cm ²	MW torch, 2.45 GHz, 700 W, 25 slm	Air / 1 atm	10 s	3 cm	5	Temperature unknown
									14 s	4 cm	5	

Author	Ref	Microorg.	Strain	No	N_0/cm^2	Surface	Source	Gas/ Pressure	Time	Distance	RF	Comment
Kuo et al.	(29)	B. Cereus	ATCC 1178	10 ⁶	10 ⁶	Paper coupon inside envelope, 1 cm ²	arc-seed MW torch, 245 GHz, 0.4 l/s	Air / 1 atm	3 s	4 cm	1	< 40 °C inside enveloppe
Kovalova et al.	(30)	B. Cereus	_	_	_	Polypropylene foil, 12.5 cm^2	Pulsed negative corona	Ambient air	10 min	direct	2.2	
							Pulsed positive corona				1.5	
Pointu et al.	(31)	G. Stearothermophilus	CIP 52.82	2x104	1.1 x10 ⁴	Glass, 1.8 cm^2	ns pulsed DC, 15 W	$N_2/1$ atm	50 min	10 cm	2.5	
Ben Gadri et al.	(32)	G. Stearothermophilus	_	10 ⁶		Nitrocellulose	DBD (glow)	Air / 1 atm	5.5 min		>5	
		B. Pumilus	_			Paper			2.4 min		>4	
		B. Subtilis niger	-								>4	

References

- 1. Halfmann H, Bibinov N, Wunderlich J, Awakowicz P. A double inductively coupled plasma for sterilization of medical devices. J Phys D Appl Phys. 2007 Jul 21;40(14):4145–54.
- 2. Stapelmann K, Fiebrandt M, Raguse M, Awakowicz P, Reitz G, Moeller R. Utilization of low-pressure plasma to inactivate bacterial spores on stainless steel screws. Astrobiology. 2013 Jul 1;13(7):597–606.
- 3. Moisan M, Boudam K, Carignan D, Kéroack D, Levif P, Barbeau J, et al. Sterilization/disinfection of medical devices using plasma: The flowing afterglow of the reduced-pressure N2-O2 discharge as the inactivating medium. Eur Phys J Appl Phys. 2013 Jul 10;63:10001.
- 4. Nagatsu M, Zhao Y, Motrescu I, Mizutani R, Fujioka Y, Ogino A. Sterilization method for medical container using microwave-excited volume-wave plasma. Plasma Process Polym. 2012 Jun;9(6):590–6.
- 5. Lim JP, Uhm HS, Li SZ. Influence of oxygen in atmospheric-pressure argon plasma jet on sterilization of Bacillus atrophaeous spores. Phys Plasmas. 2007;14(9).
- 6. Herrmann HW, Henins I, Park J, Selwyn GS. Decontamination of chemical and biological warfare (CBW) agents using an atmospheric pressure plasma jet (APPJ). Phys Plasmas. 1999;6(5):2284–9.
- 7. Venezia RA, Orrico M, Houston E, Yin S-M, Naumova YY. Lethal Activity of Nonthermal Plasma Sterilization Against Microorganisms. Infect Control Hosp Epidemiol. 2008 May;29(5):430–6.
- 8. Akitsu T, Ohkawa H, Tsuji M, Kimura H, Kogoma M. Plasma sterilization using glow discharge at atmospheric pressure. Surf Coatings Technol. 2005 Apr 1;193:29–34.
- 9. Muranyi P, Wunderlich J, Heise M. Sterilization efficiency of a cascaded dielectric barrier discharge. J Appl Microbiol. 2007 Nov;103(5):1535–44.
- 10. Muranyi P, Wunderlich J, Heise M. Influence of relative gas humidity on the inactivation efficiency of a low temperature gas plasma. J Appl Microbiol. 2008 Jun;104(6):1659–66.
- 11. Patil S, Moiseev T, Misra NN, Cullen PJ, Mosnier JP, Keener KM, et al. Influence of high voltage atmospheric cold plasma process parameters and role of relative humidity on inactivation of Bacillus atrophaeus spores inside a sealed package. J Hosp Infect. 2014;88(3):162–9.
- 12. Schnabel U, Andrasch M, Weltmann KD, Ehlbeck J. Inactivation of vegetative microorganisms and bacillus atrophaeus endospores by reactive nitrogen species (RNS). Plasma Process Polym. 2014 Feb;11(2):110–6.
- 13. Klämpfl TG, Shimizu T, Koch S, Balden M, Gemein S, Li Y-F, et al. Decontamination of Nosocomial Bacteria Including Clostridium difficile Spores on Dry Inanimate Surface by Cold Atmospheric Plasma . Plasma Process Polym. 2014 Oct;11(10):974–84.

- 14. Klämpfl TG, Isbary G, Shimizu T, Li YF, Zimmermann JL, Stolz W, et al. Cold atmospheric air plasma sterilization against spores and other microorganisms of clinical interest. Appl Environ Microbiol. 2012 Aug;78(15):5077–82.
- 15. Shimizu S, Barczyk S, Rettberg P, Shimizu T, Klaempfl T, Zimmermann JL, et al. Cold atmospheric plasma A new technology for spacecraft component decontamination. Planet Space Sci. 2014 Jan;90:60–71.
- 16. Kempf MJ, Schubert WW, Beaudet RA. Determination of lethality rate constants and d-values for bacillus atrophaeus (ATCC 9372) spores exposed to dry heat from 115°C to 170°C. Astrobiology. 2008 Dec 1;8(6):1169–82.
- 17. Alfa MJ, Degagne P, Olson N, Puchalski T, Degagne ; P, Olson ; N, et al. Comparison of Ion Plasma, Vaporized Hydrogen Peroxide, and 100% Ethylene Oxide Sterilizers to the 12/88 Ethylene Oxide Gas. Infect Control Hosp Epidemiol. 1996;17(2):92–100.
- 18. Rogers J V., Choi YW, Richter WR, Rudnicki DC, Joseph DW, Sabourin CLK, et al. Formaldehyde gas inactivation of Bacillus anthracis, Bacillus subtilis, and Geobacillus stearothermophilus spores on indoor surface materials. J Appl Microbiol. 2007 Oct;103(4):1104–12.
- 19. Shintani H. Ethylene Oxide Gas Sterilization of Medical Devices. Biocontrol Sci. 2017;22(1):1–16.
- 20. Rogers J V., Sabourin CLK, Choi YW, Richter WR, Rudnicki DC, Riggs KB, et al. Decontamination assessment of Bacillus anthracis, Bacillus subtilis, and Geobacillus stearothermophilus spores on indoor surfaces using a hydrogen peroxide gas generator. J Appl Microbiol. 2005;99(4):739–48.
- 21. Rutala WA, Gergen MF, Weber DJ. Comparative evaluation of the sporicidal activity of new low-temperature sterilization technologies: ethylene oxide, 2 plasma sterilization systems, and liquid peracetic acid. Am J Infect Control. 1998;26(4):393–8.
- 22. Levif P, Séguin J, Moisan M, Soum-Glaude A, Barbeau J. Packaging materials for plasma sterilization with the flowing afterglow of an N₂-O₂ discharge: Damage assessment and inactivation efficiency of enclosed bacterial spores. J Phys D Appl Phys. 2011;44(40).
- 23. Lerouge S, Fozza AC, Wertheimer MR, Marchand R, Yahia L. Sterilization by low-pressure plasma: the role of vacuum-ultraviolet radiation. Plasmas Polym. 2000;5(1):31–46.
- 24. Brandenburg R, Ehlbeck J, Stieber M, Woedtke T V., Zeymer J, Schlüter O, et al. Antimicrobial treatment of heat sensitive materials by means of atmospheric pressure RF-driven plasma jet. Contrib to Plasma Phys. 2007;47(1–2):72–9.
- 25. van Bokhorst-van de Veen H, Xie H, Esveld E, Abee T, Mastwijk H, Nierop Groot M. Inactivation of chemical and heat-resistant spores of Bacillus and Geobacillus by nitrogen cold atmospheric plasma evokes distinct changes in morphology and integrity of spores. Food Microbiol [Internet]. 2015;45:26–33. Available from: http://dx.doi.org/10.1016/j.fm.2014.03.018
- 26. Boudam MK, Moisan M, Saoudi B, Popovici C, Gherardi N, Massines F. Bacterial spore inactivation by atmospheric-pressure plasmas in the presence or absence of UV photons as obtained with the same gas mixture. J Phys D Appl Phys. 2006 Aug 21;39(16):3494–507.
- 27. Heise M, Neff W, Franken O, Muranyi P, Wunderlich J. Sterilization of Polymer Foils with Dielectric Barrier Discharges at Atmospheric Pressure. Plasmas Polym. 2004;9(1):23–33.

- 28. Lai W, Lai H, Kuo SP, Tarasenko O, Levon K. Decontamination of biological warfare agents by a microwave plasma torch. Phys Plasmas. 2005;12:023501.
- 29. Kuo SP, Tarasenko O, Popovic S, Levon K. Killing of bacterial spores contained in a paper envelope by a microwave plasma torch. IEEE Trans Plasma Sci. 2006;34(4):1275-80.
- 30. Koval'ová Z, Tarabová K, Hensel K, Machala Z. Decontamination of Streptococci biofilms and Bacillus cereus spores on plastic surfaces with DC and pulsed corona discharges. Eur Phys J Appl Phys. 2013;61:24306.
- 31. Pointu AM, Ricard A, Odic E, Ganciu M. Nitrogen atmospheric pressure post discharges for surface biological decontamination inside small diameter tubes. Plasma Process Polym. 2008;5(6):559–68.
- 32. Ben Gadri R, Reece Roth J, Montie TC, Kelly-Wintenberg K, P-Y Tsai P, Helfritch DJ, et al. Sterilization and plasma processing of room temperature surfaces with a one atmosphere uniform glow discharge plasma (OAUGDP). Vol. 131, Surface and Coatings Technology. 2000.